COHERENT AND STOCHASTIC PARTICLE MOTION IN A UNIFORM MAGNETIC FIELD AND OBLIQUE ELECTROSTATIC WAVES

D. J. Strozzi, A. K. Ram, A. Bers

Plasma Science and Fusion Center
Massachusetts Institute of Technology Cambridge, MA 02139. U.S.A.

Supported by NSF/DOE Grant DE-FG02-99ER54555, NSF Grant ATM 98-06328, DOE Grant DE-FG02-91ER54109

2002 Sherwood Conference Rochester, NY

Poster 2C48
23 April 2002

ABSTRACT

Stochastic motion of particles in the presence of a background magnetic field and electrostatic waves is of interest in both laboratory and space plasmas. Ion heating in fusion experiments can be achieved by a single wave driving particles into chaotic dynamics. Wave mechanisms are also believed to account for the energization of ions from the ionosphere to the magnetosphere. In particular, it has recently been shown that two perpendicular waves may explain the high-energy tail of H^{+}and O^{+}distributions in the upper ionosphere [1].

In a uniform magnetic field \vec{B}_{0}, one perpendicular wave causes particles within a range of perpendicular energies to move stochastically when the wave amplitude exceeds a threshold $[2,3]$. Two perpendicular waves whose frequencies differ by an integer multiple of the cyclotron frequency $\left(\omega_{1}-\omega_{2}=N \Omega_{c}\right)$ can coherently accelerate particles from low energies into the one-wave chaotic regime. We show that oblique waves can also produce coherent acceleration, provided their parallel wavenumbers are sufficiently close. The resonance condition now applies to the Dopplershifted wave frequencies: $\left(\omega_{1}-k_{1 z} v_{z 0}\right)-\left(\omega_{2}-k_{2 z} v_{z 0}\right)=N \Omega_{c}$.

We also consider the possibility of enhanced ion heating with two oblique waves as opposed to one oblique wave. Each wave produces a chain of primary islands at $k_{i z} v_{z}-\omega_{i}=N \Omega_{c}$, and stochasticity occurs when islands overlap $[4,5]$. Both one and two waves produce a rapid initial energization of particles in the stochastic region followed by slower, long-term heating. For two waves, the heating is found numerically to be more effective, and the stochastic region is extended to lower v_{z}.

Outline

Coherent Acceleration

- 1 perpendicular wave: stochastic region for $k_{\perp} \rho_{i} \equiv r \sim \nu \equiv \omega / \Omega_{c}$
- 2 perpendicular waves, $\omega_{1}-\omega_{2}=N \Omega_{c}$: coherent acceleration of lowenergy particles into stochastic region
- Finite $k_{z}: \omega_{1}-\omega_{2}-\left(k_{1 z}-k_{2 z}\right) v_{z 0}=N \Omega_{c}$
- Lie perturbation analysis of coherent motion
- When does coherent acceleration occur?
- Coherent change in v_{z}

Stochastic Heating by Oblique Waves

- 1 oblique wave: Overlap of islands leads to stochastic region
- 2 oblique waves: 2 chains of islands; energization
- Heating primarily in the parallel direction
- Faster and stronger heating, wider stochastic region with 2 waves

Particle Equations of Motion

- Particle moving in uniform background $\vec{B}_{0}=B_{0} \hat{z}$ and electrostatic waves:

$$
\begin{gathered}
\ddot{\vec{x}}=\sum_{i=1}^{2} \epsilon_{i} \vec{k}_{i} \sin \left(\vec{k}_{i} \cdot \vec{x}-\nu_{i} t\right)+\vec{v} \times \hat{z} \\
\epsilon_{i} \equiv \frac{q \Phi_{i}}{m \Omega_{c}^{2}}, \quad \nu_{i}=\frac{\omega_{i}}{\Omega_{c}}, \quad \vec{k}_{i}=\left(k_{i x}, 0, k_{i z}\right)
\end{gathered}
$$

Time scaled to $\Omega_{c} \equiv q B_{0} / m$, length to typical k^{-1}

- Hamiltonian formulation:

$$
\begin{gathered}
H_{w}[\vec{q}, \vec{p}, t]=\frac{1}{2}(\vec{p}-\vec{A})^{2}+\sum_{i} \epsilon_{i} \cos \left(\vec{k}_{i} \cdot \vec{x}-\nu_{i} t\right) \\
\vec{B}=\nabla \times \vec{A} \quad \vec{A}=B_{0} x \hat{y}
\end{gathered}
$$

- Guiding Center variables:

$$
H=P_{\phi}+\frac{1}{2} v_{z}^{2}+\sum \epsilon_{i} \cos \left(k_{i x} r \sin \phi+k_{i z} z-\nu_{i} t\right)
$$

$\phi=\arctan \frac{x}{v_{x}}=$ gyrophase,$\quad r=\sqrt{2 P_{\phi}}=\sqrt{x^{2}+v_{x}^{2}}=$ Larmor radius

One Perpendicular Wave ${ }^{[2,3]}$

Stochastic region: $\nu-\sqrt{\epsilon}<r<(2 / \pi)^{1 / 3}(4 \epsilon \nu)^{2 / 3}$

$$
\nu=40.47, \epsilon=3.2 \quad \text { Surface of Section }(\phi=0)
$$

Two Perpendicular Waves ${ }^{[1]}$

Coherent Acceleration: $\nu_{1}, \nu_{2} \notin \mathcal{Z}, \quad$ but $N \equiv \nu_{1}-\nu_{2} \in \mathcal{Z}$

$$
\underline{\nu_{1}}=40.47, \nu_{2}=39.47, \epsilon_{1}=\epsilon_{2}=3.2, k_{1 x}=k_{2 x}=1
$$

Analytic Treatment

- Average out fast, incoherent motion to get equation for slow, coherent motion
- Use Lie transform methods to find Hamiltonian for coherent motion
- Bounds of motion in r and v_{z}
- Understanding of phase dependence of energization

Effects of finite k_{z}

- Coherent change in $v_{z}: \Delta v_{z}=\frac{k_{1 z}-k_{2 z}}{2 N}\left(r^{2}-r_{0}^{2}\right)$
- When does coherent r acceleration remain? Answer: small $\left(k_{1 z}-k_{2 z}\right)$
- Large k_{z} with small $\left(k_{1 z}-k_{2 z}\right)$ gives acceleration, but incoherent fluctuations in $v_{z} \gg$ coherent change in v_{z}

Lie Perturbation Theory ${ }^{[6]}$ for Two Oblique Waves

- Lie generating function w gives new coordinates $\bar{x} \mathrm{w} /$ Hamiltonian \bar{H} :

$$
\frac{d \bar{x}}{d \epsilon}=[\bar{x}, w]_{\bar{x}}, \quad \bar{x}(\epsilon=0)=x \quad[f, g]_{x}=\sum_{i}\left(\frac{\partial f}{\partial q_{i}} \frac{\partial g}{\partial p_{i}}-\frac{\partial f}{\partial p_{i}} \frac{\partial g}{\partial q_{i}}\right)
$$

- w, \bar{H} can be found perturbatively: $w=\sum \epsilon^{i} w_{i}, \ldots$

$$
\begin{aligned}
D_{0}(f(x)) & \equiv \partial_{t} f+\left[f, H_{0}\right]_{x} \\
D_{0} w_{1} & =\bar{H}_{1}-H_{1} \\
D_{0} w_{2} & =2\left(\bar{H}_{2}-H_{2}\right)-\left[w_{1}, \bar{H}_{1}+H_{1}\right]_{x}
\end{aligned}
$$

For \bar{x} to describe coherent motion, choose \bar{H}_{i} to kill resonant terms on RHS of equation for w_{i}.

$$
\begin{aligned}
H & =H_{0}+\epsilon H_{1} \\
H_{0} & =P_{\phi}+\frac{1}{2} v_{z}^{2} \\
H_{1} & =\epsilon_{i} \cos \left(k_{i x} r \sin \phi+k_{i z} z-\nu_{i} t\right) \\
& =\sum_{m=-\infty}^{\infty} \epsilon_{i} J_{i, m} \cos \left(m \phi+k_{i z} z-\nu_{i} t\right), \quad J_{i, m} \equiv J_{m}\left(k_{i x} r\right) \\
\bar{H} & =H_{0}+\epsilon \bar{H}_{1}+\epsilon^{2} \bar{H}_{2}
\end{aligned}
$$

- Unperturbed motion:

$$
P_{\phi_{u}}=P_{\phi 0} \quad v_{z u}=v_{z 0} \quad \phi_{u}=t+\phi_{0} \quad z_{u}=v_{z 0} t+z_{0}
$$

Second-Order Perturbation Theory

- H_{1} contains no resonant terms, so choose $\bar{H}_{1}=0$. Gives w_{1} :

$$
\begin{gathered}
w_{1}=-\sum_{i l} \frac{\epsilon_{i} J_{i, l}}{l+k_{i z} v_{z}-\nu_{i}} \sin \left[l \phi+k_{i z} z-\nu_{i} t\right] \\
D_{0} w_{2}=\left(\partial_{t}+\partial_{\phi}+v_{z} \partial_{z}\right) w_{2}=2 \bar{H}_{2}-\left[w_{1}, H_{1}\right]
\end{gathered}
$$

- $\left[w_{1}, H_{1}\right]$ contains resonant terms from $\cos \left[(l-m) \phi+\left(k_{i z}-k_{j z}\right) z-\left(\nu_{i}-\nu_{j}\right) t\right] \rightarrow \cos \left[\left(l-m+\left(k_{i z}-k_{j z}\right) v_{z 0}-\nu_{i}+\nu_{j}\right) t+c\right]$

Set \bar{H}_{2} equal to resonant terms:

$$
\bar{H}_{2}=S_{10}\left[P_{\phi}, v_{z}\right]+S_{2}\left[P_{\phi}, v_{z}\right] \cos \left[N(\phi-t)+\left(k_{1 z}-k_{2 z}\right) z\right]
$$

Resonance Condition:

$$
\nu_{1}-\nu_{2}-\left(k_{1 z}-k_{2 z}\right) v_{z 0} \in \mathcal{Z}
$$

Change variables to I, ψ using the generating function $F_{2}=I(\phi-t)$:

$$
\psi=\frac{\partial F_{2}}{\partial I}=\phi-t \quad P_{\phi}=\frac{\partial F_{2}}{\partial \phi}=I=\frac{r^{2}}{2} \quad \tilde{H}=\bar{H}+\frac{\partial F_{2}}{\partial t}=\bar{H}-I
$$

$$
\tilde{H}\left[P_{\phi}, v_{z}, \psi, z\right]=S_{1}\left[P_{\phi}, v_{z}\right]+S_{2}\left[P_{\phi}, v_{z}\right] \cos \left[N \psi+\left(k_{1 z}-k_{2 z}\right) z\right]
$$

$$
\rightarrow v_{z}[r]=v_{z 0}+\frac{k_{1 z}-k_{2 z}}{N} \frac{r^{2}-r_{0}^{2}}{2}
$$

- Bounds on \tilde{H} : Particle confined in r to stay between $H_{ \pm}$

$$
H_{-} \leq \tilde{H} \leq H_{+} \quad \text { where } \quad H_{ \pm}[r] \equiv S_{1}[r] \pm\left|S_{2}[r]\right|
$$

$\underline{\text { Expressions for } S_{1}, S_{2}}$

$$
\begin{aligned}
& S_{1}= \frac{1}{2} v_{z}^{2}+S_{1 x}+S_{1 z} \\
& S_{1 x}=-\frac{k_{i x} \epsilon_{i}^{2}}{2 r} \frac{l}{l+k_{i z} v_{z}-\nu_{i}} J_{i, l} J_{i, l}^{\prime} \\
& S_{1 z}= \frac{1}{4} \frac{k_{i z}^{2} \epsilon_{i}^{2}}{l+k_{i z} v_{z}-\nu_{i}} J_{i, l}^{2} \\
& S_{2}= S_{2 x}+S_{2 z} \\
& S_{2 x}=-\frac{\epsilon_{1} \epsilon_{2}}{4 r}\left(\frac{1}{l+k_{1 z} v_{z}-\nu_{1}}+\frac{1}{l+k_{2 z} v_{z}-\nu_{1}}\right) \\
& *\left(k_{1 x}(l-N) J_{1, l}^{\prime} J_{2, l-N}+k_{2 x} l J_{2, l-N}^{\prime} J_{1, l}\right) \\
& S_{2 z}= \frac{k_{1 z} k_{2 z} \epsilon_{1} \epsilon_{2}}{4}\left(\frac{1}{\left(l+k_{1 z} v_{z}-\nu_{1}\right)^{2}}+\frac{1}{\left(l+k_{2 z} v_{z}-\nu_{1}\right)^{2}}\right) J_{1, l} J_{2, l-N} \\
& J_{i, l}^{\prime}=\frac{d J_{l}\left(k_{i x} r\right)}{d\left(k_{i x} r\right)}
\end{aligned}
$$

Hamiltonian Bounds Explain r Motion, ϕ Dependence

Perpendicular Waves: $\nu_{1}=40.47, \nu_{2}=39.47, \epsilon_{1}=\epsilon_{2}=3.2$

Oblique Waves: $k_{1 z}=10^{-4}, k_{2 z}=0$: Coherent Acceleration Modified


```
k1z}=1.0001,\mp@subsup{k}{2z}{}=1:\tilde{H}\mathrm{ Not Constant?
```

$\underline{r \text { vs. } t}$

$\underline{\tilde{H} \text { vs. } r}$

$$
\underline{k_{1 z}}=1.0001, k_{2 z}=1: v_{z} \text { fluctuations }
$$

$\underline{v_{z} \mathrm{VS} . t}$

- v_{z} fluctuations \gg coherent motion. Add $\left\langle v_{z}\right\rangle$ to $v_{z 0}$ for $H_{ \pm}$.

$$
\tilde{H} \text { with } v_{z}(0)=\left\langle v_{z}\right\rangle \text { vs. } t
$$

- Separate $H_{ \pm}$for each set of initial conditions.
$\underline{k_{1 z}}=0.01, k_{2 z}=0:$ Coherent Acceleration Suppressed
$\underline{r \text { vs. } t}$

- Larger $v_{z}^{2} / 2$ term brings H_{+}, H_{-}closer.

$$
\underline{\tilde{H} \text { vs. } r}
$$

One Oblique Wave ${ }^{[4]}$

Transform to wave frame ($v_{z} \rightarrow v_{z}-\nu / k_{z}$):

$$
H=\frac{1}{2}\left(r^{2}+v_{z}^{2}\right)+\sum_{l} \epsilon J_{l}\left(k_{x} r\right) \cos \left(l \phi+k_{z} z\right)
$$

- $\epsilon \ll 1$: Series of resonances at $v_{z}-\nu / k_{z}=L \in \mathcal{Z}$. H near each resonance \approx nonlinear oscillator:

$$
H_{L} \approx E+\epsilon J_{L}\left(k_{x} r\right) \cos \left(L \phi+k_{z} z\right)
$$

$$
\text { Island half-width in } v_{z}: \quad w_{L} \equiv 2 \sqrt{\epsilon J_{L}\left(k_{x} r\right)}
$$

Resonance Overlap Criterion: $w_{L}+w_{L \pm 1}>1 / k_{z}$

$\underline{\phi=0.3 \pi \text { Surface of Section: } \epsilon=0.06, \nu=3.6, k_{x}=k_{z}=1, r_{0}=2.24}$

Two Oblique Waves ${ }^{[5]}$

- Cannot generically eliminate time from both waves:

$$
H=\frac{1}{2}\left(r^{2}+v_{z}^{2}\right)+\epsilon_{1} \cos \left(k_{x} r \sin \phi+k_{z} z\right)+\epsilon_{2} \cos \left(k_{x} r \sin \phi+k_{z} z-\left(\nu_{2}-\nu_{1}\right) t\right)
$$

- H not constant, cannot bound kinetic energy as in one-wave case.
- $\epsilon \ll 1$: Each wave produces its own chain of islands

$$
\phi=0.3 \pi \mathrm{SoS} ; \epsilon=0.005, \nu=3.6,3.1, k_{x}=k_{z}=1, r_{0}=1.4
$$

One Large-Amplitude Wave

$$
\underline{\epsilon}=0.4, k_{x}=k_{z}=1, \nu=3.6, v_{z 0}=0, r_{0}=2.24
$$

Two Large-Amplitude Waves

$$
\epsilon=0.2, k_{x}=k_{z}=1, \nu=3.6,3.1, v_{z 0}=-1, r_{0}=2.24
$$

- 2 waves: Larger stochastic region in v_{z} with half the wave energy

Short-Time Heating

$v_{z 0}=0.25, r_{0}=2.24$

$$
\underline{\epsilon=0.2, \nu=3.6,3.1 \quad 2 \text { waves }}
$$

$\underline{\text { Long-Time Heating }}$

$v_{z 0}=0.25, r_{0}=2.24$

$\underline{\epsilon=0.2, \nu=3.6,3.1 \quad 2 \text { waves }}$

Future Work

- Coherent motion for ν_{1}, ν_{2} both integers.
- Study of stochastic "diffusion" on short and long timescale.
- Investigation for realistic plasma and wave parameters.

References

[1] A. K. Ram, A. Bers, D. Benisti, "Ionospheric ion acceleration by multiple electrostatic waves." J. Geophys. Res., 103,A5 (1998)
[2] C. F. F. Karney, "Stochastic ion heating by a lower hybrid wave." Phys. Fluids 21,9 (1978)
[3] C. F. F. Karney and A. Bers, "Stochastic Ion Heating by a Perpendicular Propagating Electrostatic Wave." Phys. Rev. Lett., 39,9 (1977)
[4] G. R. Smith and A. N. Kaufman, "Stochastic acceleration by an obliquely propagating wave - An example of overlapping resonances." Phys. Fluids 21,12 (1978)
[5] S. Benkadda, A. Sen, D. R. Shyklar, "Chaotic dynamics of charged particles in the field of two monochromatic waves in a magnetized plasma." Chaos 6,3 (1996)
[6] A. J. Lichtenberg and M. A. Lieberman, "Regular and Stochastic Motion." Springer-Verlag, 1983.

