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ABSTRACT

Stochastic motion of particles in the presence of a background magnetic

field and electrostatic waves is of interest in both laboratory and space

plasmas. Ion heating in fusion experiments can be achieved by a single

wave driving particles into chaotic dynamics. Wave mechanisms are also

believed to account for the energization of ions from the ionosphere to the

magnetosphere. In particular, it has recently been shown that two perpen-

dicular waves may explain the high-energy tail of H+ and O+ distributions

in the upper ionosphere [1].

In a uniform magnetic field ~B0, one perpendicular wave causes parti-

cles within a range of perpendicular energies to move stochastically when

the wave amplitude exceeds a threshold [2,3]. Two perpendicular waves

whose frequencies differ by an integer multiple of the cyclotron frequency

(ω1 − ω2 = NΩc) can coherently accelerate particles from low energies

into the one-wave chaotic regime. We show that oblique waves can also

produce coherent acceleration, provided their parallel wavenumbers are

sufficiently close. The resonance condition now applies to the Doppler-

shifted wave frequencies: (ω1 − k1zvz0)− (ω2 − k2zvz0) = NΩc.

We also consider the possibility of enhanced ion heating with two oblique

waves as opposed to one oblique wave. Each wave produces a chain of

primary islands at kizvz−ωi = NΩc, and stochasticity occurs when islands

overlap [4,5]. Both one and two waves produce a rapid initial energization

of particles in the stochastic region followed by slower, long-term heating.

For two waves, the heating is found numerically to be more effective, and

the stochastic region is extended to lower vz.



Outline

Coherent Acceleration

• 1 perpendicular wave: stochastic region for k⊥ρi ≡ r ∼ ν ≡ ω/Ωc

• 2 perpendicular waves, ω1 − ω2 = NΩc: coherent acceleration of low-

energy particles into stochastic region

• Finite kz : ω1 − ω2 − (k1z − k2z)vz0 = NΩc

– Lie perturbation analysis of coherent motion

– When does coherent acceleration occur?

– Coherent change in vz

Stochastic Heating by Oblique Waves

• 1 oblique wave: Overlap of islands leads to stochastic region

• 2 oblique waves: 2 chains of islands; energization

• Heating primarily in the parallel direction

• Faster and stronger heating, wider stochastic region with 2 waves



Particle Equations of Motion

• Particle moving in uniform background ~B0 = B0ẑ and electrostatic

waves:

~̈x =

2∑
i=1

εi
~ki sin(~ki · ~x− νit) + ~v × ẑ

εi ≡ qΦi

mΩ2
c

, νi =
ωi

Ωc
, ~ki = (kix, 0, kiz)

Time scaled to Ωc ≡ qB0/m, length to typical k−1

• Hamiltonian formulation:

Hw[~q, ~p, t] =
1

2
(~p− ~A)2 +

∑
i

εi cos(~ki · ~x− νit)

~B = ∇× ~A ~A = B0xŷ

• Guiding Center variables:

H = Pφ +
1

2
v2

z +
∑

εi cos(kixr sin φ + kizz − νit)

φ = arctan
x

vx
= gyrophase, r =

√
2Pφ =

√
x2 + v2

x = Larmor radius

z,B0

x

k1

k2



One Perpendicular Wave[2,3]

Stochastic region: ν −√ε < r < (2/π)1/3(4εν)2/3

ν = 40.47, ε = 3.2 Surface of Section (φ=0)
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Coherent Acceleration: ν1, ν2 /∈ Z, but N ≡ ν1 − ν2 ∈ Z
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Analytic Treatment

• Average out fast, incoherent motion to get equation for slow, coherent

motion

• Use Lie transform methods to find Hamiltonian for coherent motion

• Bounds of motion in r and vz

• Understanding of phase dependence of energization

Effects of finite kz

• Coherent change in vz : ∆vz = k1z−k2z
2N (r2 − r2

0)

• When does coherent r acceleration remain? Answer: small (k1z−k2z)

• Large kz with small (k1z− k2z) gives acceleration, but incoherent fluc-

tuations in vz À coherent change in vz



Lie Perturbation Theory[6] for Two Oblique Waves

• Lie generating function w gives new coordinates x̄ w/ Hamiltonian H̄ :

dx̄

dε
= [x̄, w]x̄, x̄(ε = 0) = x [f, g]x =

∑
i

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)

• w,H̄ can be found perturbatively: w =
∑

εiwi, ...

D0(f (x)) ≡ ∂tf + [f, H0]x

D0w1 = H̄1 −H1

D0w2 = 2(H̄2 −H2)− [w1, H̄1 + H1]x

For x̄ to describe coherent motion, choose H̄i to kill resonant terms on

RHS of equation for wi.

H = H0 + εH1

H0 = Pφ + 1
2v

2
z

H1 = εi cos(kixr sin φ + kizz − νit)

=

∞∑
m=−∞

εiJi,m cos(mφ + kizz − νit), Ji,m ≡ Jm(kixr)

H̄ = H0 + εH̄1 + ε2H̄2

• Unperturbed motion:

Pφu = Pφ0 vzu = vz0 φu = t + φ0 zu = vz0t + z0



Second-Order Perturbation Theory

• H1 contains no resonant terms, so choose H̄1 = 0. Gives w1:

w1 = −
∑

il

εiJi,l

l + kizvz − νi
sin[lφ + kizz − νit]

D0w2 = (∂t + ∂φ + vz∂z)w2 = 2H̄2 − [w1, H1]

• [w1, H1] contains resonant terms from

cos[(l−m)φ+(kiz−kjz)z−(νi−νj)t] → cos[(l−m+(kiz−kjz)vz0−νi+νj)t+c]

Set H̄2 equal to resonant terms:

H̄2 = S10[Pφ, vz] + S2[Pφ, vz] cos[N(φ− t) + (k1z − k2z)z]

Resonance Condition: ν1 − ν2 − (k1z − k2z)vz0 ∈ Z
Change variables to I, ψ using the generating function F2 = I(φ− t) :

ψ =
∂F2

∂I
= φ− t Pφ =

∂F2

∂φ
= I =

r2

2
H̃ = H̄ +

∂F2

∂t
= H̄ − I

H̃ [Pφ, vz, ψ, z] = S1[Pφ, vz] + S2[Pφ, vz] cos[Nψ + (k1z − k2z)z]

→ vz[r] = vz0 +
k1z − k2z

N

r2 − r2
0

2

• Bounds on H̃ : Particle confined in r to stay between H±

H− ≤ H̃ ≤ H+ where H±[r] ≡ S1[r]± |S2[r]|



Expressions for S1, S2

S1 = 1
2v

2
z + S1x + S1z *** 1

2v
2
z absent for perp. waves!

S1x = −kixε
2
i

2r

l

l + kizvz − νi
Ji,lJ

′
i,l

S1z =
1

4

k2
izε

2
i

l + kizvz − νi
J2

i,l

S2 = S2x + S2z

S2x = −ε1ε2

4r

(
1

l + k1zvz − ν1
+

1

l + k2zvz − ν1

)

∗ (
k1x(l −N)J ′1,lJ2,l−N + k2xlJ

′
2,l−NJ1,l

)

S2z =
k1zk2zε1ε2

4

(
1

(l + k1zvz − ν1)2
+

1

(l + k2zvz − ν1)2

)
J1,lJ2,l−N

J ′i,l =
dJl(kixr)

d(kixr)



Hamiltonian Bounds Explain r Motion, φ Dependence

Perpendicular Waves: ν1 = 40.47, ν2 = 39.47, ε1 = ε2 = 3.2
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k1z = 1.0001, k2z = 1: H̃ Not Constant?

r vs. t
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k1z = 1.0001, k2z = 1: vz fluctuations

vz vs. t
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• vz fluctuations À coherent motion. Add 〈vz〉 to vz0 for H±.

H̃ with vz(0) = 〈vz〉 vs. t
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k1z = 0.01, k2z = 0: Coherent Acceleration Suppressed

r vs. t
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• Larger v2
z/2 term brings H+, H− closer.

H̃ vs. r
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One Oblique Wave[4]

Transform to wave frame (vz → vz − ν/kz):

H =
1

2
(r2 + v2

z) +
∑

l

εJl(kxr) cos(lφ + kzz)

• ε ¿ 1 : Series of resonances at vz − ν/kz = L ∈ Z . H near each

resonance ≈ nonlinear oscillator:

HL ≈ E + εJL(kxr) cos(Lφ + kzz)

Island half-width in vz : wL ≡ 2
√

εJL(kxr)

Resonance Overlap Criterion: wL + wL±1 > 1/kz

φ = 0.3π Surface of Section: ε = 0.06, ν = 3.6, kx = kz = 1, r0 = 2.24
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Two Oblique Waves[5]

• Cannot generically eliminate time from both waves:

H =
1

2
(r2+v2

z)+ε1 cos(kxr sin φ+kzz)+ε2 cos(kxr sin φ+kzz−(ν2−ν1)t)

• H not constant, cannot bound kinetic energy as in one-wave case.

• ε ¿ 1 : Each wave produces its own chain of islands

φ = 0.3π SoS; ε = 0.005, ν = 3.6, 3.1, kx = kz = 1, r0 = 1.4
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One Large-Amplitude Wave

ε = 0.4, kx = kz = 1, ν = 3.6, vz0 = 0, r0 = 2.24
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Two Large-Amplitude Waves

ε = 0.2, kx = kz = 1, ν = 3.6, 3.1, vz0 = −1, r0 = 2.24
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• 2 waves: Larger stochastic region in vz with half the wave energy



Short-Time Heating

vz0 = 0.25, r0 = 2.24

ε = 0.4, ν = 3.6 1 wave
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Long-Time Heating

vz0 = 0.25, r0 = 2.24

ε = 0.4, ν = 3.6 1 wave
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Future Work

• Coherent motion for ν1, ν2 both integers.

• Study of stochastic “diffusion” on short and long timescale.

• Investigation for realistic plasma and wave parameters.
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