Modeling the Interplay of Laser-Plasma Interactions and Hohlraum Radiation-Hydrodynamics

LLE Seminar

D. J. Strozzi, S. M. Sepke, D. S. Bailey, P. Michel, L. Divol, G. D. Kerbel, C. A. Thomas

29 September 2017

Hohlraum laser plasma interactions are key players in x-ray drive and shape

Important for high hohlraum fill density

Low-foot, high-foot designs

"Inline" LPI models recently added to HYDRA and LASNEX: D. J. Strozzi et al., *Phys. Rev. Lett.* 2017

- Cross-Beam Energy Transfer (CBET)
 - Form of Brillouin scattering
 - Laser 1 $\gamma \rightarrow$ Laser 2 γ + ion acoustic wave
 - To longer wavelength laser in plasma frame
- Stimulated Raman scattering (SRS)
 - Laser $\gamma \rightarrow$ scattered γ + Langmuir wave
 - Energy loss
 - Affects shape
 - Energetic or "hot" electrons \rightarrow preheat
- Stimulated Brillouin scattering (SBS)
 - Laser $\gamma \rightarrow$ scattered γ + ion acoustic wave
- Glint: akin to direct-drive CBET
 - Inner beams: escape opposite LEH \rightarrow energy loss
 - Outer beams: can imprint on capsule, like direct drive

Drive deficit: "high-flux model" over-predicts hohlraum x-ray drive

"Low-flux model" ~1995 – 2008: NOVA, Omega

- XSN non-LTE atomic physics
- Low flux limit: f = 0.05

"high-flux model": NIF 2009-now

- *Pure* vacuum hohlraums: low-flux model under-predicts drive
- DCA non-LTE
- High (~ no) flux limit: f = 0.15
- R. London Omega shots ~2008; M. D. Rosen et al., HEDP 2011

Gas-filled hohlraums: NIF 2010 - present

- High-flux model over-predicts drive
- Reduce laser power "Oggie multipliers" [O. Jones et al., Phys. Plasmas 2012]
- Deficit increases with hohlraum fill density along with SRS [O. Jones et al., Phys. Plasmas 2017]

Evidence for very low flux limit: two-stream flux limit [C. Thomas] or f = 0.03 [O. Jones, L. Suter]

- Drive deficit, "micro-dot" T_e measurements
- Inner-beam glint (unabsorbed light) may contribute L. Suter

[O. Jones et al., PoP 2017]

Conventional modeling over-predicts CBET to inner beams

2012 APS DPP Excellence in Plasma Physics Award

Slide courtesy P. Michel, Anomalous Absorption 2013

Inline LPI models improve agreement of modeling with data, reveal SRS dynamics

 Old "script" process Rad-hydro run: no CBET, no backscatter removed CBET post-processing script [P. Michel] 2nd rad-hydro run: CBET, backscatter removed from incident laser More sausaged implosion than data →Limit CBET: ion wave amplitude clamp δn_e/n_e 	 Inline CBET, SRS removed at lens CBET calculated internally, vs. space Ion wave energy deposition Versus script: Picket: less CBET, due to inverse brem. Peak power: less CBET, due to SRS removed from inners Still more sausaged than data 	 Inline CBET and SRS Pump laser depleted in target Langmuir-wave deposition Inverse brem. of SRS light Inline SRS results: Langmuir waves driven near laser entrance LEH hotter: reduces CBET More polar x-ray drive Less sausaged implosion 	 Reduced e- heat flux: Higher fill temperature Less IB absorption More glint No inline SRS: Simulated bangtime late "Too much winning" Plus inline SRS: Langmuir heating confined to LEH Further reduces CBET Moderate glint Close on bangtime + shape!
<	Part 1 of talk —— e- flux limit f = 0.15	Part 2	Part 3 Two-stream flux limit

Today's goal is you understand two plots

Inline LPI models improve agreement of modeling with data, reveal SRS dynamics

Old "script" process	Inline CBET,	Inline CBET and SRS	Reduced e- heat flux
Rad-hydro run: no CBET, no backscatter removed CBET post-processing script [P. Michel] 2 nd rad-hydro run: CBET,	 SRS removed at lens CBET calculated internally, vs. space Ion wave energy deposition 	 Pump laser depleted in target Langmuir-wave deposition Inverse brem. of SRS light 	 Higher fill temperature Less IB absorption More glint Simulated bangtime late "Too much winning"
backscatter removed from incident laser More sausaged implosion than data →Limit CBET: ion wave amplitude clamp $\delta n_e/n_e$	 Versus script: Picket: less CBET, due to inverse brem. Peak power: less CBET, due to SRS removed from inners 	 Inline SRS results: Langmuir waves driven near laser entrance LEH hotter: reduces CBET More polar x-ray drive Less sausaged implosion 	 Plus inline SRS: Langmuir heating confined to LEH Further reduces CBET Moderate glint Match bangtime and shape!
	Dant 1 of talls	Dout 2	Dout 2

Part 1 of talk **HYDRA** simulations $\delta n_{sat} = 10^{-3}$

Part 3

•

•

•

•

Inline LPI models: coupled-mode equations along laser rays: steady state, strong damping limit

• CBET Ion wave saturation clamp δn_e^{sat} :

$$\delta n_e \propto \min\left[\sqrt{I_0 I_i}, \delta n_e^{\rm sat}\right]$$

Inline models applied to NIF shot N121130: early "high-foot" plastic symcap

- E_{laser} = 1270 kJ P_{laser} = 350 TW
- $(\lambda_{23}, \lambda_{30}) \lambda_{out} = (8.5, 7.3)$ Ang.
- CBET to inners: tune polar P2 shape
- CBET to 23's: tune azimuthal M4 shape
- Fill 1.45 mg/cc He
- Gold hohlraum: "575 scale"

Hotspot x-ray image: "Pancaked", $P_2/P_0 = -0.12$ (u) (u) Hohlraum axis

X (um)

Inputs to runs: measured SRS power and maximum wavelength

Picket: Hydra Inline CBET model gives less CBET than script, which neglects absorption

- Script neglects absorption, or else transferred power doesn't reach exit plane
- CBET clamp $\delta n_e^{sat} = 10^{-3}$ in all HYDRA runs

Peak power: inline CBET model gives less CBET than script, due to how SRS handled

 $\partial_z I_{in} = g I_{out} I_{in}$ Ion heating has little effect on CBET, unlike in P. Michel et al., Phys. Rev. Lett. 2012

But: SRS may develop after CBET takes place → need inline SRS treatment too

Inline LPI models improve agreement of modeling with data, reveal SRS dynamics

Old "script" process

- Rad-hydro run: no CBET, no backscatter removed
- CBET post-processing script [P. Michel]
- 2nd rad-hydro run: CBET, backscatter removed from incident laser
- More sausaged implosion than data
- \rightarrow Limit CBET: ion wave amplitude clamp $\delta n_e/n_e$

Inline CBET, SRS removed at lens

- CBET calculated internally, vs. space
- Ion wave energy deposition

Versus script:

- Picket: less CBET, due to inverse brem.
- Peak power: less CBET, due to SRS removed

from inners

Inline CBET and SRS

- Pump laser depleted in target
- Langmuir-wave deposition
- Inverse brem. of SRS light

Inline SRS results:

- Langmuir waves driven near laser entrance
- LEH hotter: reduces CBET
- More polar x-ray drive
- Less sausaged implosion

Reduced e- heat flux

- Higher fill temperature
- Less IB absorption
- More glint
- Simulated bangtime late
 - "Too much winning"

Plus inline SRS:

- Langmuir heating confined to LEH
- Further reduces CBET
- Moderate glint
- Match bangtime and shape!

Part 1 of talk

Part 2 LASNEX simulations $\delta n_{sat} = 10^{-2}$ Part 3

SRS exponentiates mostly on resonance, most power growth off resonance

Not a predictive SRS model: user gives SRS power and wavelength. Inline model gives self-consistent laser depletion and Langmuir wave deposition.

Inline SRS model solution along one ray

Inline SRS model in LASNEX: large CBET to inners, little SRS inverse brem. absorption

NIF high-foot shot N121130

Langmuir wave energy: 119 kJ

- Deposited locally in fluid T_e
- Upper bound on LEH effect for given flux limit
- Hot electron treatment is ongoing

Inline SRS: Langmuir waves driven just inside entrance hole

Compare two LASNEX runs: inline SRS vs. SRS removed at lens

Common to both runs:

- Same escaping SRS power
- Inline CBET model, clamp $\delta n_e^{sat} = 0.01$

Inline SRS model increases LEH electron temperature 1 – 2 keV

Time 12.6 ns: peak escaping SRS power

Higher T_e reduces CBET: off-resonant gain ~ $T_i^{1/2}/(T_i+ZT_e)^2$

Inline SRS model reduces CBET to inners, 60% more energy remains on outer beams

Post-transfer outer beam power approaching finite value for large δn_e^{sat} : limited by plasma conditions, not artificial clamp

Inline SRS model has little effect on total x-ray drive

*Two curves almost overlay

"Hohlraums are calorimeters" – L. J. Suter

Third run separates shape effect of inline SRS model: reduced CBET vs. Langmuir wave depletion

Inline SRS model: reduced CBET <u>and</u> Langmuirwave depletion of inners reduce waist x-ray drive

Inline LPI models improve agreement of modeling with data, reveal SRS dynamics

 Old "script" process Rad-hydro run: no CBET, no backscatter removed CBET post-processing script [P. Michel] 2nd rad-hydro run: CBET, backscatter removed from incident laser More sausaged implosion than data →Limit CBET: ion wave 	 Inline CBET, SRS removed at lens CBET calculated internally, vs. space Ion wave energy deposition Versus script: Picket: less CBET, due to inverse brem. Peak power: less CBET, due to SRS removed 	 Inline CBET and SRS Pump laser depleted in target Langmuir-wave deposition Inverse brem. of SRS light Inline SRS results: Langmuir waves driven near laser entrance LEH hotter: reduces CBET More polar x-ray drive Less sausaged implosion 	 Redcued e- heat flux Higher fill temperature Less IB absorption More glint Simulated bangtime late "Too much winning" Plus inline SRS: Langmuir heating confined to LEH Further reduces CBET Moderate glint Match bangtime and shape!
	Part 1 of talk e- flux limit f = 0.15	Part 2	Part 3 LASNEX simulations δn _{sat} = 10 ⁻² → Two-stream flux limit

Inner-beam "glint¹" recently appreciated as possible significant energy loss from NIF hohlraums

"Inline" LPI models² in hydro codes:

- Cross-Beam Energy Transfer (CBET)
 - Outer \rightarrow Inner + ion acoustic wave
- Stimulated Raman scattering (SRS)
 - Langmuir wave heating
 - SRS light absorption (minor)

Hohlraum energetics:

- Laser coupled to hohlraum = Incident Backscatter Transmitted
- Transmitted = "Glint" = (1-absorption)*(inner power after LPI)
- Inner power after LPI = Incident + CBET from outers BS Langmuir heating

¹D. Turnbull, P. Michel, J. E. Ralph, L. Divol, et al., *Phys. Rev. Lett.* (2015)

² D. J. Strozzi, D. S. Bailey, P. Michel, L. Divol, S. M. Sepke et al., *Phys. Rev. Lett.* (2017)

Lasnex two-stream flux limit: crude return current instability model

- Spitzer-Harm heat flux carried by e- with $(2-4)v_{Te}$
- Zero net current \rightarrow bulk electrons drift vs. ions

Two-stream flux limit increases fill temperature – especially with Langmuir heating

Today's goal: understand this slide

Langmuir heating and two-stream both reduce CBET to inners – strong synergy

Two-stream flux limit reduces laser absorption, enhances glint

L. Suter: similar enhanced glint with low flux limit f=0.02-0.03, and amplified glint

Two-stream flux limit: enhanced glint reduces total drive

Capsule shape combines CBET, Langmuir heating, and glint

Summary: Inline CBET and SRS improve shape modeling, plus low flux limit may explain drive and shape

Inline CBET reduced vs. script

- Picket: script neglects absorption
- Peak power: script doesn't remove SRS power
- Ion-wave heating increases T_{ion} in entrance hole, small effect on CBET

Inline SRS further reduces waist x-ray drive

- Langmuir waves driven just inside entrance far from inner-beam spots
- LEH hotter \rightarrow less CBET
- Net effect is less sausaging drive, same total x-ray drive
- Little absorption of SRS light

Low (two-stream) flux limit

• "Just right" amount of CBET and inner-beam glint

Inline models change plasma conditions in entrance hole, especially with low flux limit

Future model improvements: consistent electron distribution

As complex as needed but not more so:

- No 3D PIC need reasonable computing time
- A few spherical harmonics? \rightarrow like multigroup diffusion
- Expand about Maxwellian: reduce to collisional fluid when valid
- Nonlocal Schurtz, Lasnex suprathermal models of this type
- Extensions needed to incorporate all effects

This physics occurs in all ICF approaches:

- Direct
- Indirect
- Magnetic (MagLIF)

BACKUP BELOW

Lawrence Livermore National Laboratory

Physics beyond 1D energetics is limiting NIF fusion yield

- Several designs have experimentally shown implosion velocities adequate for much higher yields than measured
 - HDC, low foot, high foot even with backscatter and drive multipliers

Yield deficit due to 2D and 3D effects

- Low-mode shape \rightarrow fix the hohlraum •
- Fix the tent •

- Asymmetric x-ray drive
- Implosion shape
- Time-dependent symmetry swings: •
 - Non-stagnating flow, residual KE ٠

Hydra inline CBET picket

Inline CBET: Ion-wave heating increases ion temperature ~ 700 eV in entrance hole

Time 14 ns: late peak power

Inline CBET: ion heating can have small effect on CBET

Off-resonance CBET gain rate: P. Michel et al., Phys. Plasmas 2013

 $v_{IAW} \ll v_{Ti} \ll v_{Te} \rightarrow$ $\partial_z I_0 \propto I_0 I_1 n_e Z \frac{T_i^{1/2}}{(T_i + ZT_e)^2}$

Ion heating can slightly increase CBET gain before it gradually drops

Gain rate (Z=2)

Inline SRS model gives less sausaged implosion, still differs from measurement

axis

Simulated x-ray radiograph: "2D Convergent Ablator"

Measured x-ray self emission: "Pancaked", $P_2/P_0 = -0.12$

Inline SRS model: Langmuir wave heating dominates in low Z

Heating power density [W/cm³] laser SRS light Lunu Laser IB 6 10+14 Langmuir 4. Au wall 2. **SRS IB** 0.2 0.0 0.4 0.6 z [cm] Capsule LEH center

Post-CBET outer beam power

Experimental tests of inline models

Optical Thomson Scattering

- ~FY17 on NIF
- Plasma conditions in LEH
- Langmuir waves in LEH

"Microdot" platform

- M. Barrios, N. Izumi
- Mid-Z patches on target surfaces
- Spectroscopy $\rightarrow T_e$

Static x-ray imager (SXI): brighter outer beam spots with inline SRS model

Lawrence Livermore National Laboratory

