First Magnetized Hohlraum-Driven Implosions on the NIF

D. J. Strozzi, J. D. Moody, B. B. Pollock, H. Sio, G. B. Zimmerman, D. D. Ho, S. O. Kucheyev, C. A. Walsh, B. G. Logan, G. E. Kemp LLNL

> APS DPP Talk UO04 11 November 2021

> > ational Laborator

LLNL-CONF-828568 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Magnetization increases nuclear yield and hotspot temperature in hohlraum-driven, gas-filled implosions, in line with modeling

What we learned from 6 NIF shots from Dec. 2020 to present:

- 1. "Hohlraum energetics:"
- Electrically resistive AuTa4 alloy¹ for hohlraum wall: facilitate field soak-thru
- Good hohlraum material: efficient x-ray production, low backscatter
- 2. Magnetized hohlraums similar to unmagnetized:
- x-ray drive similar, backscatter low for both
- Implosion shape tunable with laser cone fraction

3. Magnetized capsules are hotter and give higher yield

- Due to reduced electron thermal loss from hotspot
- Reduced alpha loss matters for layered DT, not for these gas capsules

All rad-hydro modeling shown uses Lasnex with the LHT common model

Tion [keV]

UO4 Mag. NIF block: 1 down, 3 to go UO4.7: John Moody: Mag. NIF overview UO4.8: Dave Strozzi: Mag. NIF shots: this talk! UO4.9: Hong Sio: 2ndary DT's on NIF shots UO4.10: Darwin Ho: magnetized shocks

UO4.11 – 13: A. Bose, S. O'Neill, C. Walsh: more on magnetized ICF

¹ A Engwall +, US patent app. 62/928968; L B Bayu Aji +, J. Phys. D 2021; A M Engwall +, Appl. Surf. Sci. 2021; J H Bae +, J. Appl. Phys. 2021

Magnetized platform¹: BigFoot² subscale platform plus constraints

Why BigFoot? Best combo of

- High performance
- Reliability / predictability
- NIF subscale database

2 C. A. Thomas +, PoP 2020; K. Baker +, PRL 2018

1 J. D. Moody +, PoP 2020; J. D. Moody +, J. Fusion Energy [submitted]

Laser pulse: implosion shape tunable by cone fraction even with B field

LLNL-PRES-XXXXXX

AuTa4 hohlraum wall: x-ray drive with B and no-B comparable

Total flux measured by DANTE-1 28% cone fraction shots: B and no-B close

Drive comparable to similar BigFoot shots with Au wall

DANTE data unfold by PUKA tool: Elijah Kemp +, RSI 2020

OMEGA AuTa foil experiments showed slight decrease (<5%) of total flux with increasing Ta %

Backscatter: low on all magnetized platform AuTa4 shots, no sign of B field effect

Shot	Platform	Cone frac %	Backscatter / laser energy %	Comment
N161204	BigFoot, B = 0	28	1.2	mostly cone 50 SBS late in time, common on BigFoot
N201128	Mag, B = 0	28	0.2	All low: low-power caboose why no cone 50 SBS?
N210301	Mag, B = 26 T	28	0.1	all low, no effect of B field
N210607	Mag, B = 26 T	23	0.1	all low
N210717	Mag, $B = 0$	23	0.1	all low; N210912 similar

Lasnex modeling: cone fraction multipliers to match data different with B vs. no B

CBET changes? CBET not included in this modeling.

B field increases nuclear yield and ion temperature, Lasnex captures trends but absolute yields too high

Lasnex sims

- T_{ion} close for 2 nearly-round implosions
- Yields 2-3x above data
- Possible causes: fill tube, mix, hotspot velocity

Lasnex captures relative effect of B field pretty well

CF = 23% shots	data	Lasnex
DD yield: B / no B	2.90x	2.43x
Tion [keV]: B – no B	1.08	1.13

Summary and Future Plans: Towards Magnetized Ignition

Summary: Lessons learned in 6 NIF shots:

- 1. "Hohlraum energetics:"
- Electrically resistive AuTa4 is good hohlraum wall material: efficient x-ray production, low backscatter

2. Magnetized hohlraums similar to unmagnetized:

- x-ray drive similar, backscatter low for both
- Implosion shape tunable with laser cone fraction, comparable to un-magnetized

3. Magnetized capsules are hotter and give higher nuclear yield

- Due to reduced electron thermal loss from hotspot
- Reduced alpha loss matters for layered DT, not for these gas capsules

The Future

- Warm subscale NIF platform:
 - Vary B field, capsule gas fill \rightarrow convergence
 - Higher performance: higher x-ray drive from smaller hohlraum, DU wall, 1/3 cone fraction
 - B field took hotspot from 3 to 4 keV, can B take from 4 to 5 keV?
- Modeling:
 - Understand difference in laser multipliers with B and no B: cross-beam energy transfer (CBET)?
 - Improve agreement on yield: mix, fill tube, hotspot velocity
- On to magnetized cryo implosions in FY24!

Tion [keV]

BACKUP BELOW

Magnetized platform¹: BigFoot² subscale platform plus constraints

Why BigFoot?

- Best combination of high performance and reliability as of 2018
- Extensive subscale experiments

Why Subscale?

- Laser energy ~ 1 MJ for optics damage, SBS risk
- Smaller hohlraum \rightarrow larger B field ~ pulser current / hohlraum volume

Why room temperature?

- Pulser not fielded on cryogenic target positioner yet; planned for 2024
- Gas-filled capsules: no ice layer, no keyholes

1 J. D. Moody +, PoP 2020; J. D. Moody +, J. Fusion Energy [submitted]

2 C. A. Thomas +, PoP 2020; Baker +, PRL 2018

Total DANTE flux: 4 shots, 23% cone fraction

Foil experiment on OMEGA demonstrated comparable total x-ray flux and M-band between Au and AuTa alloy

Target-laser configuration

Omega DANTE instrument operated by Dan Barnak

DANTE analysis and HYDRA sims by Elijah Kemp

Total flux shows a slight decrease (< 5%) and M-band increase (~ 40%) with increasing Ta concentration

Lasnex modeling: need to reduce laser power by 0 – 15% to match measured DANTE flux

simulated / measured flux

Shot summary, calendar order

Shot	Bz [Tesla]	Capsule fill [mg/cc]	Cone fraction [%]	DD Yield [#]	DD Tion [keV]	Hotspot P2/P0 [%]	Upshot, what we learned
N201228-1	0	None: leak	28	N/A	N/A	N/A	Hohlraum commissioning: good x-ray drive, low backscatter
N210301-1	26	4.07 D3- ⁴ He7	28 Only design	5.0E11	4.2	63	First magnetized hohlraum shot: hotspot large sausage
N210607-2	26	3.99 D2	23 choice so far	2.0E13	3.8	5.7	Reduced cone frac \rightarrow round implosion! Switch to pure D fill: more 2ndary DT's
N210620-1	0	3.99 D2	23	N/A	N/A	N/A	low x-ray drive, maybe due to low-Z hohlraum liner from Tfab
N210717-1	0	3.89 D2	23	5.3E12	2.7	N/A	Yield and Tion much lower than mag. shot No shape data: blocked line of sight
N210912-1	0	3.99 D2	23	6.7E12	2.7	-16.6	B = 0 repeat with shape data: Moderate pancake

Cone fraction = inner / total laser power

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

