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Goal: demonstrate B field compression in hohlraum-driven 
implosions measured by improved nuclear performance

Design starting point: subscale BigFoot symcap
• High-adiabat, high-performing, reliable platform
• More aggressive, lower-adiabat designs can be tried next
• Modified due to NIF constraints

MHD hohlraum modeling with imposed field
• Small effect on x-ray drive and plasma conditions
• Even though heat flow magnetized in hohlraum fill

Capsule performance with imposed axial field of 30 T:
• DDn yield 30-50% higher, Tion 0.5 – 0.7 keV higher
• Hotspot P2 5-10 um more prolate

Bz

Goldilocks principle: enough convergence to compress B and improve nuclear performance,
not so much that hohlraum or implosion become challenging, unstable, or hard to model

Other APS talks this session
• John Moody – next talk
• Darwin Ho – 4pm
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Magnetized Design: Bigfoot1 Symcap plus Constraints

HDC
capsule

hohlraum fill: He
0.3 mg/cc

Au wall

D-He3
fill

BigFoot Subscale Symcap N161204

lasers

Magnetized Design

C5H12 fill:
LEH window pressure limit
0.257 mg/cc: same ne

Au2Ta8 wall3:
resistive,
metallic glass

D-He4
or pure D

fill

lasers:
reduced energy 
and power

pulser 
coilsx

x

x

x

x

x

3 S. O. Kucheyev et al: provisional patent

optics damage, SBS risk

yield limits, gas bottles

room temp.: no cryo imposed fields

field soak-thru2

2 J. D. Moody+, PoP 20201 C. A. Thomas+, PoP 2020
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Laser pulses: Bigfoot shot N161204 and magnetized design

N161204: Backscatter: low, coupling 98.8%, some late 50o SBS
N161204: 1106 kJ, 340 TW
peak CF (cone frac) = 0.28

Warm design: 908 kJ
low-power “caboose” for SBS risk

“caboose”

Same as
161204
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▪ Lasnex LHT deck – best-effort model from Oggie Jones’s hohlraum modeling group
— Electron flux limit f=0.03 in wall after 2.0 ns – reduces drive deficit
— MHD: turn off Hall and Leduc-Righi terms: numerical issues
— Multi-species hydro, one Tion : similar to “classic” single-species

▪ Hydra HyPyd deck – Pythonic framework (J. Salmonson, J. Koning)

Magnetized hohlraum rad-hydro + MHD modeling

Lasnex runs
N161204 post-shot
Magnetized design, Bz0 = 0
Mag. design, Bz0 = 30 T

>0 pole hot

>0 waist hot

P2/P0 x-ray flux
Magnetized drive pole-hot:

Au2Ta8 vs. Au wall main reason
Total x-ray flux on capsule ~ Trad

4

Very close til
caboose
starts
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Hohlraum dynamics: frozen-in B field, small temperature change

| Magnetic field |  [T]

wall

LEH windowablator

Self-gen. B

Imposed Bz0 = 30 T

e- temperature [keV]

Au bubble

gravity

Hydra runs: N161204 post-shots        4.5 ns: early peak power

Self-gen. B

Imposed Bz0 = 30 T

Initial 
field

Unlike Montgomery et al. PoP 2015: gas-filled Omega hohlraums.  
• Very different system: smaller, shorter pulses, less laser energy



7
LLNL-PRES-xxxxxx

Te [keV] Movie: hotter in LEH w/ imposed B, not in rest of fill

0.5 ns 1.0 ns 1.5 ns

3.0 ns 3.5 ns 4.0 ns

2.0 ns

2.5 ns

Self-gen. B

Imposed  Bz0 = 30 T

Hydra runs: N161204 post-shots

hotter w/ Bz0
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Magnetized design: Simulated yield 30-50% higher with 30 T field

Hotspot P2 5-10 um more sausaged w/ field

Matches N161204 data

Tion 0.5 – 0.7 keV higher w/ fieldYield: 30-50% higher w/ field

max yield 
w/ field
up 38%

Cone fraction multiplier
CF = inner / total power

Lasnex MHD simulations

Changes in yield and Tion out of errors bars for 
gas-filled NIF capsules
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Lasnex modeling: magnetized design: hotspot x-ray images

Peak cone fraction * 1.3: 
P2/P0 = -1.3%

Convergence = initial IR / P0 = 14

Peak cone fraction * 1.3: 
P2/P0 = 13.1%

Convergence = 14

Bz0

Increased P2 with field likely due to effect on e- thermal conduction in capsule, 
not change in x-ray flux

Bz0 = 0
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Magnetized hohlraum shot plan: 4 NIF shots to demonstrate 
magnetization via improved nuclear performance

Shape tune via laser cone 
fraction @ Bz0 = 30 T 

2

B ~ 0 control shot
repeat of 1 or 2

3

Elaser ~ 900 kJ @ Bz0 = 30 T

1 4

B-field scan
repeat of 1 or 2

29 Dec. 2020 28 Feb. 2021 June – Sep. 2021

Yield: 30-50% higher w/ 30 T field

max yield 
w/ field
up 38%

June – Sep. 2021
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BACKUP BELOW
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BigFoot platform chosen for first magnetized implosions

• Start with existing platform, stick with it through DT layered implosions in several years
• We don't have the shots to make a new design, or switch horses after a year

• Be bold: start with a high-yield platform: Yield meaningfully > 1E16 → BigFoot, HDC, Hybrid E

• Subscale: limited to < 1 MJ laser energy
• High-yield platform with subscale version → BigFoot, HDC

• Start easy: first demonstrate B field benefit in “lower risk” platform → BigFoot
• Low shot rate: minimize surprises: mix, meteors, …
• Bigfoot lower risk due to higher adiabat, better stability
• Bigfoot used for 2019 hydro scaling (Baker et al., yield > 1E16), basis of SQ* designs (Clark et al.)
• Higher risk (e.g. lower adiabat) targets can be magnetized subsequently

• AuTa resistive hohlraum wall: closer to pure Au than DU: almost all BigFoot shots have been Au

Goldilocks principle: enough convergence to compress B and improve nuclear performance,
not so much that hohlraum or implosion become challenging, unstable, or hard to model
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Lasnex hohlraum modeling: magnetized design capsule performance

N161204 post-shots: bangtime within 90 ps, yield within 6%

Case neutron
bangtime –
7.12ns [ps]

DDn yield
[1E11]

DD Tion 
[keV]

hotspot
x-ray 
P2 [um]

Comment

N161204 data 0 9.07 := 1x 3.09   := 0 +11.2 Sausage

N161204, nominal -90 9.41 (1.04x) 2.96   (-0.13) -9.0 BT+yield close, pancake

N161204, peak CF*1.3 -50 9.63 (1.06x) 2.99  (-0.1) +9.9 Sausage like data

x-ray P2 at time of peak emission

Magnetized design, peak CF *1.3

no Bz0 +240
less Elaser

276
pure D fill

3.25
no He, less rad.

-0.8 Close to round
Au2Ta8 pole-hot drive vs. Au

Bz0=30 T +240 350 = 1.27x Bz0=0 3.77
Bz0=0 + 0.52 kV

+7.9 Sausage w/ Bz0
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Lasnex modeling: magnetized design: hotspot x-ray images

No imposed field, Nominal pulse:
P2/P0 = -48.3%

Peak cone fraction * 1.3: 
P2/P0 = -1.3%

Convergence = initial IR / P0 = 14

Peak cone fraction * 1.3: 
P2/P0 = 13.1%

Convergence = 14

Bz0

Increased P2 with field likely due to effect on e- thermal conduction in capsule, 
not change in x-ray flux
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BigFoot Shot N161204: sausaged hotspot @ CF=0.28

Equatorial x-ray image:
Time integrated

Eqautorial x-ray image:
Time resolved

S. Khan

N. Izumi
Strong fill tube feature: 
10% contour used for PN’s

• DDn yield 9.07E11
• Tion 3.09 keV
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N161205: DT symcap: sausaged like 161204, less filltube feature

“Ridges” from 
ablator visible 
since no He?
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N161205-003: DT symcap: BS low, 98.8% coupling
Pulse essentially same as 161204
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Laser pulses with increased peak cone fraction to match 
N161204 measured shape

warm design

CBET likely culprit, but:
• Inline Lasnex CBET model gives transfer to outers
• Vampire CBET post-processor gives transfer to inners

• Bailey and Strozzi working on, can’t sort out til Lasnex team back on site

nominal inner
nominal outer
CF*1.3 inner
CF*1.3 outer

inner*1.3 = 
outer nominal

start CF*1.3
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Case neutron
bangtime –
7.12ns [ps]

DDn yield
[1E11]

DD Tion 
[keV]

hotspot
x-ray 
P2 [um]

Comment

N161204 data 0 9.07 := 1x 3.09   := 0 +11.2 Sausage

N161204, nominal -90 9.41 (1.04x) 2.96   (-0.13) -9.0 BT+yield close, pancake

N161204, peak CF*1.3 -50 9.63 (1.06x) 2.99  (-0.1) +9.9 sausage like data

Magnetized design

No Bz0 +180
less Elaser

176:
pure D fill

3.14 -26.0 Very pancaked:
Au2Ta8 vs. Au wall

same + Bz0 = 30T +200 297 = 1.69x Bz0=0 3.87 = 0.73+Bz0=0 -21.9 less pancaked w/ Bz0

warm, peak CF*1.3, no Bz0 +240 276 3.25 -0.8 Close to round

same + Bz0=30 T +240 350 = 1.27x Bz0=0 3.77 = 0.52+Bz0=0 +7.9 sausage w/ Bz0
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Lasnex modeling: N161204: peak cone fraction * 1.3 to match data

01: nominal pulse: pancake, unlike data
P2 = -9.0 um

02: peak cone fraction *1.3: sausage, close to data
P2 = 9.9 um

Data: P2 = 11.2 um
Convergence ratio = capsule IR / P0 = 844 / 55 = 15

x-ray images at time of peak emission, including instrumental blurring
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Lasnex modeling: warm design: Imposed Bz0 = 30 T: increased P2

Nominal pulse:
P2/P0 = -41.3%

Peak cone fraction * 1.3: 
P2/P0 = 13.1%

Convergence ratio = initial IR / P0 = 844 / 60.2 = 14

Bz
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Magnetized hohlraum science questions
B field direct effects on LPI roughly with increasing field (Yuan Shi):
• Faraday rotation: change polarization, could affect CBET
• Landau damping of SBS
• SBS light spectrum / SRS Landau damping
• SRS light spectrum
• Hot electron generation / transport – see below

Improved inner-beam propagation with imposed B: high-fill designs
• Equator channel hotter and less dense
• Bulk fill *not* hotter in NIF hohlraum sims – unlike Omega shots (Montgomery+ 2015 PoP)

D J Strozzi +,  Journ. Plasma Phys. 2015: low-foot design

Connection to magnetized ignition SI
• SI pursuing magnetized ignition with bigfoot-

like, high-adiabat design, 3-4 shots/year
• Do not have resources to look at things not 

on this path, like “basic science” or low-
adiabat designs

• Complementary work in ICF program could 
study LPI, improving high-fill designs
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Hohlraum dynamics: frozen-in B field, small temperature change

| Magnetic field |  [T]

wall

LEH windowablator

Self-gen. B

Imposed Bz0 = 30 T

e- temperature [keV]

No MHD

Self-gen. B

4.5 ns: early peak power

Au bubble

Self-gen. B

Imposed 
Bz0 = 30 T

gravity

Te difference [keV]

Self-gen B - no MHD

Self-gen B  - Bz0 = 30 T

Hydra runs: N161204 post-shots
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Hot Electron Propagation with B field

D J Strozzi +, 
Journ. Plasma Phys. 2015

Picket: window hots 
guided to capsule

Peak power: SRS hots: depends on birth location
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Hot Electron Mitigation

• Concern: B field can guide hot e-’s to capsule

• BigFoot shots {low hohlraum fill, short pulse, HDC capsule}: 
• Hot e-’s generally much lower than older high foot {high hohlraum fill, long pulse, CH capsule}

• Experimental evidence of hot e- problem:
• Symcaps probably insensitive
• Need layered DT, or re-emit ball?

• If hot e-’s are a problem:
• Preferred option: reduce hot e- source

• Window hots: beam phasing (starting inners before outers) known to be effective, further 
tuning possible

• Could try direct-drive techniques, e.g. mid-Z dopant in window
• Fallback option: orthogonal B field with “Leia coils”

• Intrinsically 3D: NIF is geared toward axisymmetry: codes, lasers, targets, diagnostics…
• Would *not* help if hot e-’s born on equator

Bx
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Varying cone fraction: imposed B increases yield and makes 
implosion more sausaged

max B0=0 yield: 2.76E13
max B0=30 T yield: 3.82E13 = 1.38x B0=0

CF mult of 1.3 needed 
to match N161204 data
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