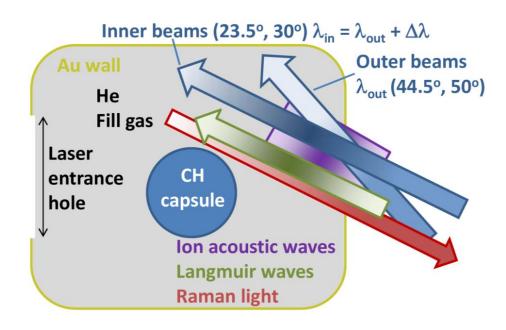
Modeling Laser-Plasma Interaction over a Suite of NIF Experiments

D. J. Strozzi, R. L. Berger, T. Chapman, O. S. Jones, D. T. Woods, S. A. MacLaren, P. Michel, L. Divol

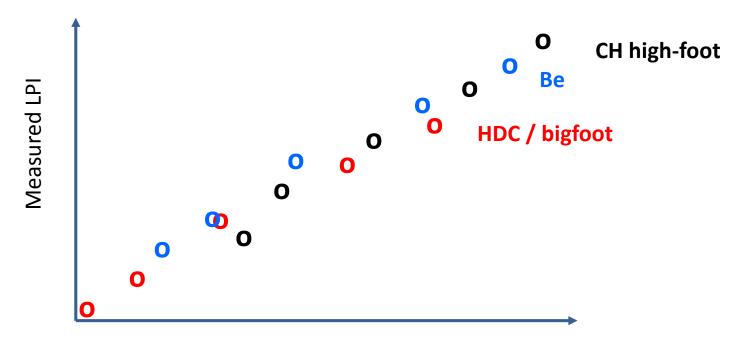

APS DPP 2017

23 October 2017

Laser-Plasma Interaction (LPI) in hohlraums

"Inline" LPI models recently added to HYDRA and LASNEX: D. J. Strozzi et al., *Phys. Rev. Lett.* 2017

Important for high hohlraum fill density


Low-foot, high-foot designs

- Cross-Beam Energy Transfer (CBET) : $\Delta\lambda$
 - Form of Brillouin scattering
 - Laser 1 γ Laser 2 γ + ion acoustic wave
 - To longer wavelength laser in plasma frame
- Stimulated Raman scattering (SRS)
 - Laser $\gamma \rightarrow$ scattered γ + Langmuir wave
 - Energy lost
 - Energetic or "hot" electrons → preheat
 - Also affect shape
- Stimulated Brillouin scattering (SBS)
 - Laser $\gamma \rightarrow$ scattered γ + ion acoustic wave

LPI scaling study: understand and model trends in NIF LPI data

Nirvana: universal "fruit plot": simulated LPI figure of merit collapses data from different targets

Simulated LPI (e.g. linear gain, pF3D reflectivity)

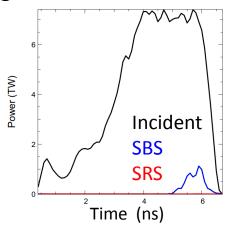
Summary: towards predictive rad-hydro + laserplasma modeling

Plasma

maps

Lasnex rad-hydro model: O. Jones et al., PoP 2017

- Converged numerics
- No per-shot multipliers
- DCA non-LTE model
- Low electron flux limit f = 0.03
- New: Inline CBET: clamp $\delta n_e/n_e = 0.01$


NIF "bigfoot" shot [C. Thomas, APS-DPP 2016]

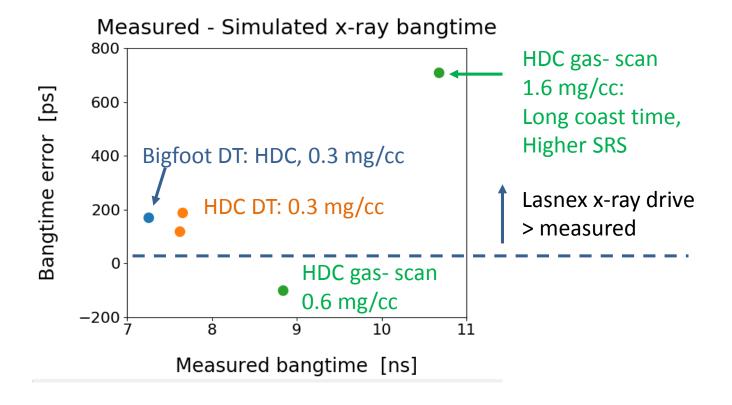
- CBET (calculated) to outer cones
- Outer-cone SBS: 10-15% end of pulse

Outer SBS modeling

- DEPLETE: ray-based extension of linear gain
- pF3D: paraxial-envelope code
 - speckles, polarization smoothing, SSD, ...
- SBS Increases with time, but less than data
- SBS from gold bubble

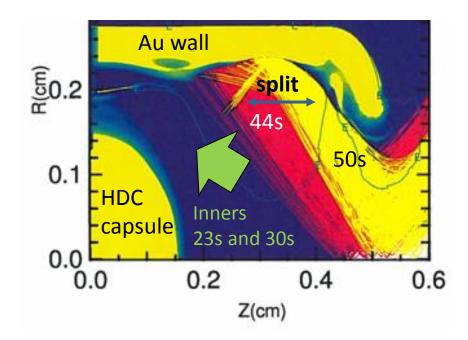
Bigfoot shot: outer beam BS

Outer SBS reflectivity [%]



Energetics across a set of NIF shots

"Drive deficit"


- Rad-hydro modeling generally over-predicts x-ray drive in NIF hohlraums
- Especially for long pulses, high gas fill density, high backscatter

LPI simulated for "Bigfoot" shot N170109

Bigfoot

- 1st and 2nd shocks merge in ablator, before reaching DT fuel
- "Robust" hostspot: high adiabat, high rho*R
- Less prone to hydro instabilities
- Price: lower 1D fusion gain

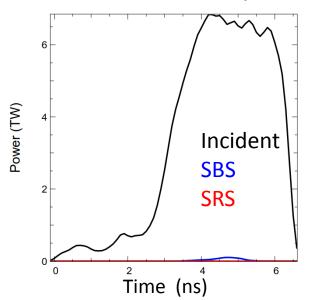
 $\Delta\lambda$ = 0: CBET due to plasma flow only

Outer beams: "Quad splitting"

- Spread out outer beam spots on wall
- 4 beams in an outer quad split in azimuth
- 44's and 50's separated in Z

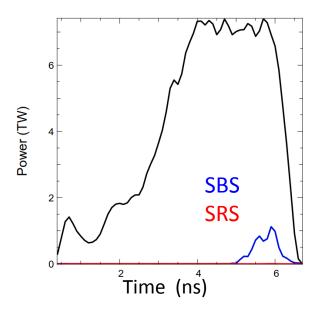
Benefits:

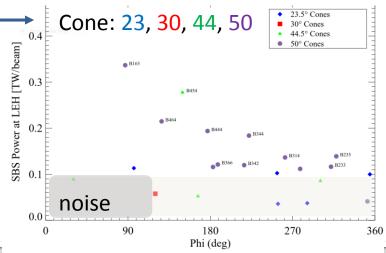
- Less azimuthal asymmetry
- Lower intensity at wall → lower SBS
- Less M-band x-rays
- Less wall / bubble motion


¹C. A. Thomas, APS DPP 2016 invited talk

Bigfoot shot N170109: SBS late in time on cone 50

Q31B FABS: Inner cone, 30°

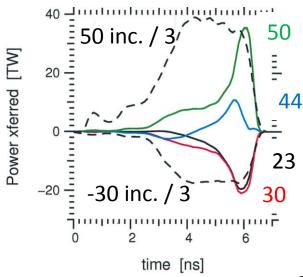


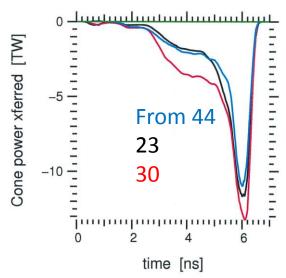

DrD (Drive diagnostic) sensors

SBS in >= one beam on every quad:

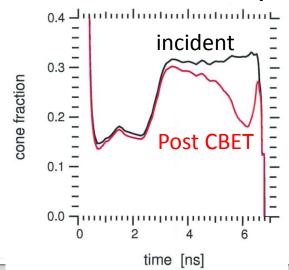
More SBS on cone 50 than 44

Q36B FABS: Outer cone, 50°





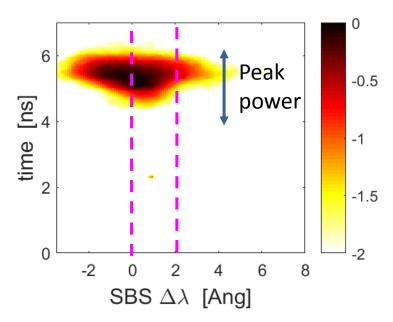
Bigfoot: calculated CBET to outers, especially 50's



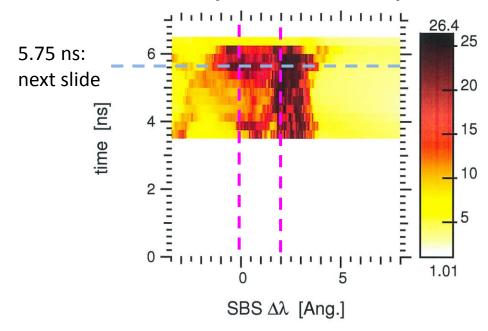
cone 50: transfer FROM all other cones

NIF Shot **N170109**

Cone fraction = Inner / Total power



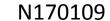
CBET may be part of reason SBS higher on cone 50 than cone 44



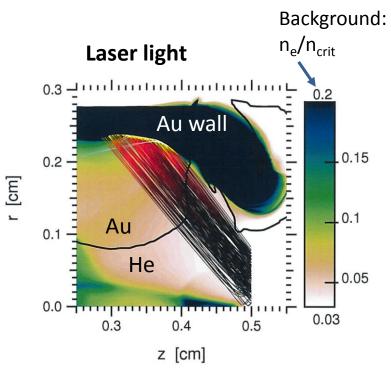
Bigfoot: Cone 50 SBS spectrum vs. DEPLETE¹

Measured SBS spectrum: Shot N161204 (Symcap)

Ray-averaged DEPLETE gain spectrum: Shot N170109: layered DT: no SBS spectrum



- DEPLETE spectrum redshifted by ~ 2 Ang. vs data
- Depends on sound speed and flow velocity
- Neglects SSD bandwidth, "Dewandre effect:" wavelength shift from $\partial n_e/\partial t$

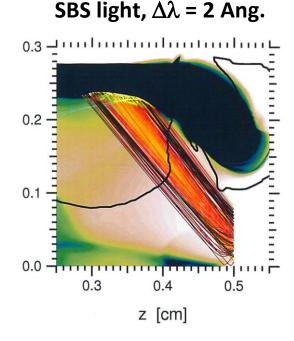

¹D. J. Strozzi, E. A. Williams, D. E. Hinkel, D. H. Froula, R. A. London, D. A. Callahan, *Phys. Plasmas* 2008

DEPLETE: Cone 50 SBS develops in gold bubble

5.75 ns: late peak power

SBS light, $\Delta \lambda = 0$ Ang.

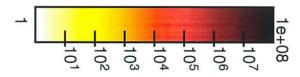
0.3


0.1

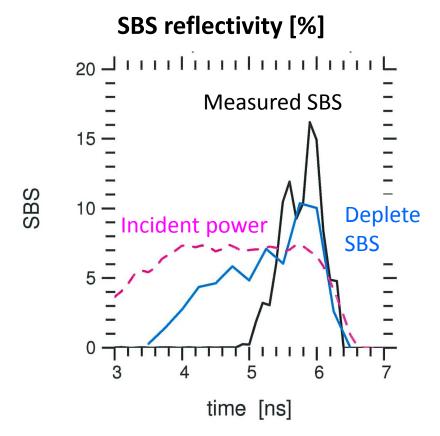
0.3

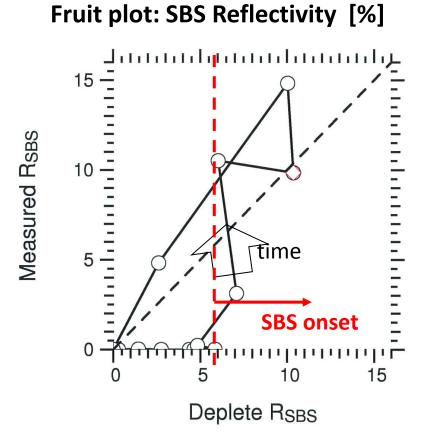

0.4

0.5


z [cm]

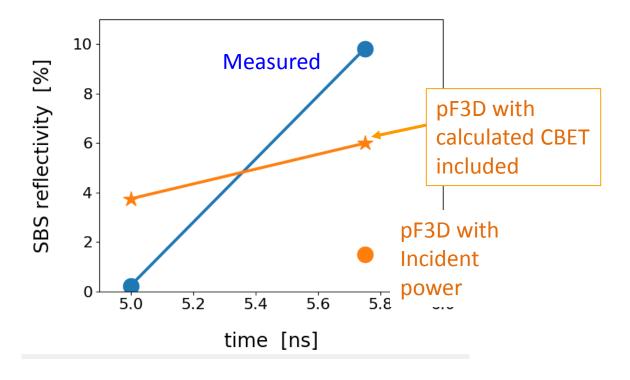
Laser intensity [a.u.]




SBS intensity / noise [log scale]

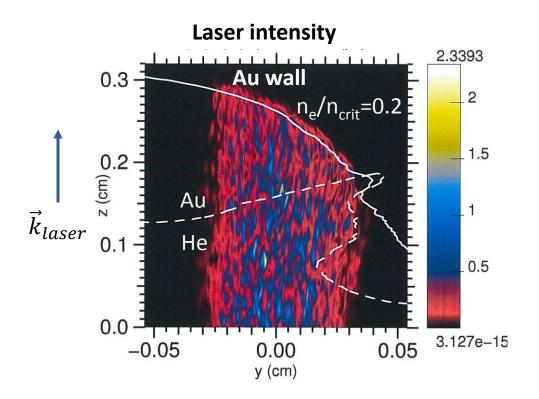
Cone 50 SBS: Measured and DEPLETE reflectivities qualitatively track vs. time

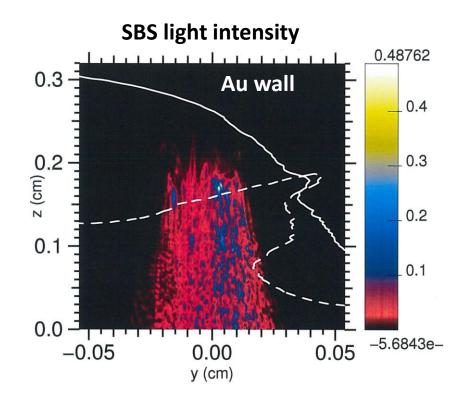
NIF Shot N170109



Deplete reflectivity: sum over rays of wavelength-integrated SBS intensity

Cone 50 SBS: pF3D² simulations close to measured reflectivity, when CBET included


NIF bigfoot shot N170109



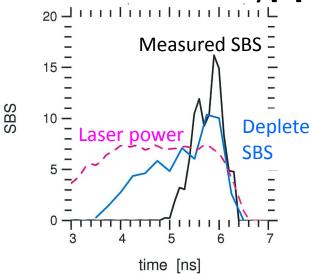
pF3D simulations by R. L. Berger

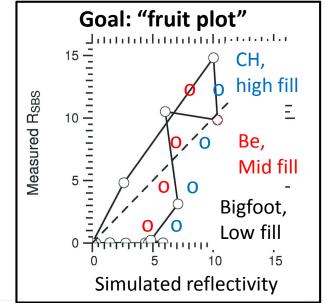
²R. L. Berger, C. H. Still, E. A. Williams, A. B. Langdon, Phys. Plasmas 1998

pF3D: outer SBS grows in gold bubble

- pF3D run includes one 48° and one 52° beam each orthogonally polarized
- 50° quad has two other beams: spatially separated at wall due to "quad splitting"
- Plots in pF3D coordinates: laser propagates in z

LPI scaling study: status and future work


LPI on "Bigfoot" shot N170109


- CBET modeling: CBET to outers, increases in time
- Backscatter: mostly cone 50 SBS, peaks late in time
- Cone 50 SBS modeling: DEPLETE and pF3D
 - Similar reflectivity to data, when CBET included

Future work

- Apply to more shots, more LPI data inner SRS, SBS in beams within quad
- Suggest rad-hydro and LPI modeling improvements, e.g. gold bubble

Cone 50 SBS reflectivity [%]

BACKUP BELOW

LPI a key and varying player on NIF ignition shots

CH ablator campaigns long pulse 15-25 ns	low foot '09-12 low adiabat	high foot 12-14 higher adiabat	CH672 14-now large scale 672 hohlraum
hohlraum He fill, mg/cc	0.96	1.6	0.6
CBET: $\Delta \lambda = \lambda_{in} - \lambda_{out}$	high (to inners)	high (to inners)	0 usually
Inner BS	high SRS	high SRS	moderate SRS SBS with $\Delta\lambda$: mirror damage
Outer BS	low	low	SBS throughout peak

year

HDC ablator campaigns short pulse 5-9 ns	near-vacuum hohlraum 12-15 symmetry dynamic, hard	bigfoot + HDC 15-now
hohlraum He fill, mg/cc	0.032	0.3
CBET: $\Delta \lambda = \lambda_{in} - \lambda_{out}$	0	0
Inner BS	low	modest SRS
Outer BS	low	high SBS at end of long pulse

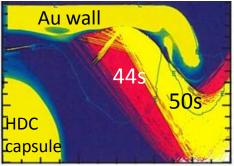
Be campaigns intermediate pulse

Be high foot 12-14
Analogous to CH high foot
LPI similar

Be672 15-now similar to CH672 LPI similar, somewhat lower

LPI modeling: two-step process

Rad-hydro code


- Hydra, Lasnex
- Inline models (CBET, SRS)

output

plasma maps

low-density conditions

$$n_e < n_{crit} = 9*10^{21} / cm^3$$

LPI code

input

- NEWLIP: linear gains
- DEPLETE: extended gains
- CBET script (P. Michel)
- New ray-based tool (A. Colaitis)
- pF3D: paraxial-envelope, speckles
- SLIP: steady-state pF3D

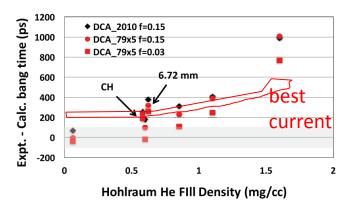
Validated LPI model can guide future designs:

- Current "hybrid" campaigns
- Innovative hohlraum concepts
 - Foam liners, new geometries
- 2-2.5 MJ blue-light NIF
- 3 MJ green-light NIF
- Imposed B field

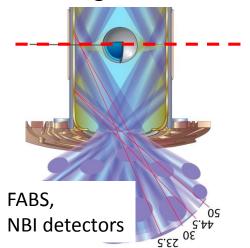
Rad-hydro model: "best current" physics in Lasnex¹

Opacity + EOS

- LTE tables for $T_e < T_{crit}$, non-LTE DCA for $T_e > T_{crit}$
- T_{crit} = 300 eV in wall, 50 eV elsewhere (capsule)
- DCA models: March 2014
- Gold: dca 79x5 improved "bubble" physics


Laser

- No inline SRS/SBS
 - Backscatter removed from incident laser
- Inline CBET: unpolarized quads
 - Saturation $\delta n_e/n_e = 0.01$
- Inverse brem. with Langdon effect
- Ponderomotive force: needed for CBET momentum deposition


Electron heat conduction

- Heat flux $q = min(q_{SH}, f n_e T_e v_{Te})$
- q_{SH} = Spitzer-Harm + Lee-More corrections
- Low flux limit f = 0.03 everywhere
- No MHD, nonlocal, ion turbulence models

Simulations: too much x-ray drive, esp. for long pulses, high fill density

2D RZ, Only bottom half: BS diagnostics there

¹O. Jones et al., *Phys. Plasmas* 2017

Rad-hydro: high-resolution numerics, ALE mesh

- Numerical resolution: O. Jones' "hi-res" settings from convergence study¹
 - Capsule: 72 angular zones in $90^{\circ} \rightarrow \Delta\theta = 1.25^{\circ}$
 - Wall: innermost zone $\Delta r=4$ nm, Δr increases by 1.03x
 - 180 radiation energy groups
 - 10 zones across LEH window thickness
- Mesh: "As Lagrangian As Reasonably Achievable"*
 - ALE (Arbitrary Lagrangian-Eulerian) mesh management: R. Tipton
 - Hohlraum: ALE from t=0, may freeze mesh after laser is off
 - Capsule: ALE from user-determined t>0, mesh not frozen
- Laser: 600 rays per quad, CBET iteration options
- LHT (Lasnex Hohlraum Template) git version-controlled input deck
 - Needed to handle multiple shots + multiple designers
 - Based on deck from Cliff Thomas, from Richard Town, Peter Amendt, etc.
- No ad-hoc / per-shot multipliers: power, cone fraction, ...
- Same Lasnex version: 13 April 2017

¹O. Jones et al., Phys. Plasmas 2017

*N. Meezan, private communication (2007)

Computing resources pretty modest for highresolution hohlraum simulation

Lasnex run of N170109 bigfoot DT shot

• 170807 code – several fixes / improvements

• 2 nodes of mica: 72 TOSS_3 cores

One-sided hohlraum

Laser: 14,400 rays, inline CBET

DCA: dca_79x6 (results in talk use x5): 3923 levels

• Hi res: zones: 32k gold, 20k others

On 72 CPUs:

15 hours to laser off10 more hours to bang

time	6.5 ns: laser off	7.1 ns: just after x-ray bangtime
wall-hours := wh	14.9	25.0
CPU-hours (wh*72)	1073	1800
DCA [%wh]	32	48
laser [%wh]	38	24
other [%wh]	31	28

Hats off to Lasnex team, esp. D. Bailey, G. Zimmerman, J. Harte

DEPLETE¹: ray-based, steady-state backscatter calculations, extension of linear gain

laser
$$\frac{d}{dz}I_0(z) = -\kappa_0I_0$$
 $-I_0\int d\omega_1\frac{\omega_0}{\omega_1}(\tau_1 + \Gamma_1i_1)$ $-\frac{\partial}{\partial z}i_1(z,\omega_1) = -\kappa_1i_1$ $-\Sigma_1$ $-I_0(\tau_1 + \Gamma_1i_1)$

scattered light

inv. brem. damping

brem. noise Thomson scattering

coupling

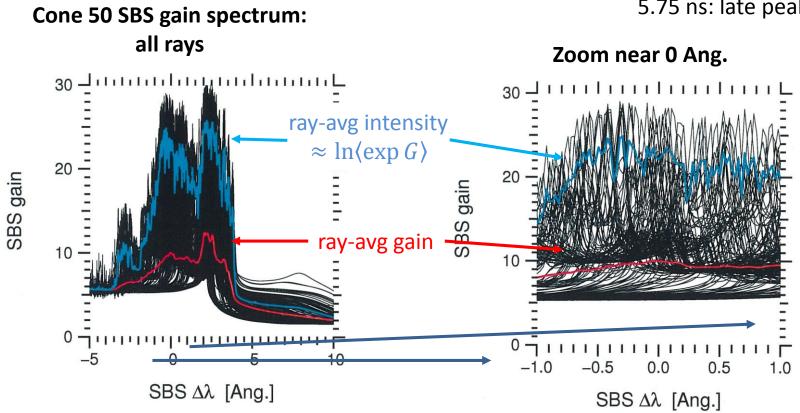
DEPLETE gain:

$$G = \ln \frac{i_1(\omega, z_0)}{i_1^{brem}(\omega, z_0)}$$

noise level without laser = scattered light with just brem. emission + absorption

Features of DEPLETE:

- Uses 1-D plasma conditions from 3-D ray-trace
- Spectrum of scattered frequencies
- Strong damping limit for plasma waves
- Pump depletion of laser
- Linear kinetic coupling coefficients
- Collisional plasma-wave damping

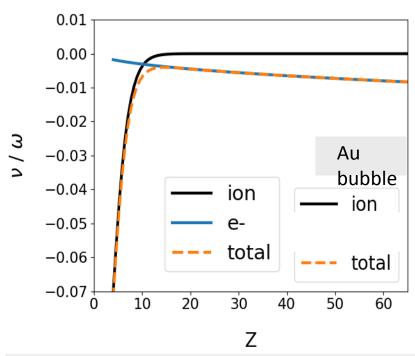

DEPLETE lacks:

- Temporal effects
- Laser speckles
- PS, SSD
- Dewandre effect
- Multi-D effects, e.g.
 refractive intensification

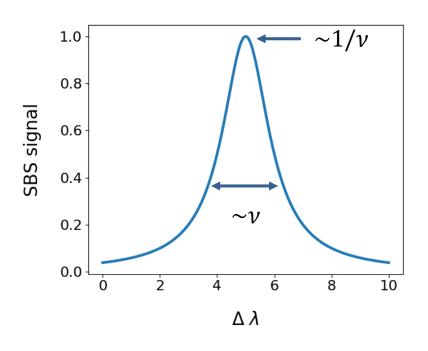
¹D. J. Strozzi, E. A. Williams, D. E. Hinkel, D. H. Froula, R. A. London, D. A. Callahan, Phys. Plasmas 2008

Each ray has narrow SBS resonance at different wavelength¹

N170109 5.75 ns: late peak power



¹L. Tolstoy, *Anna Karenina* (1878)


Ion waves weakly damped for $ZT_e/T_i >> 1$: e.g. gold

IAW Landau damping rate: gold

$$T_e = 2T_i$$
, $k\lambda_{De} = 0.6$

SBS spectrum

Electrons

$$\frac{v}{\omega} \propto \left(\frac{Zm_e}{m_i}\right)^{\frac{1}{2}} \exp\left[-\frac{Zm_e}{2m_i}\right] + \frac{1}{2} \left(\frac{ZT_e}{T_i}\right)^{\frac{3}{2}} \exp\left[-\frac{ZT_e}{2T_i}\right]$$

plus collisions (not included)

