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Inner-beam “glint1” recently appreciated as possible 
significant energy loss from NIF hohlraums

1 D. Turnbull, P. Michel, J. E. Ralph, L. Divol, et al., Phys. Rev. Lett. (2015)
2 D. J. Strozzi, D. S. Bailey, P. Michel, L. Divol, S. M. Sepke, G. D. Kerbel, et al., Phys. Rev. Lett. (submitted)

“Inline” LPI models2 in hydro codes:

 Cross-Beam Energy Transfer (CBET) 

— Outer  Inner + ion acoustic wave
 Stimulated Raman scattering (SRS) 

— Langmuir wave heating

— SRS light absorption (minor)

“Glint:”
Un-absorbed
Inner-beam
light

Hohlraum energetics:
• Laser coupled to hohlraum = Incident – Backscatter – Transmitted
• Transmitted = “Glint” = (1-absorption)*(inner power after LPI)
• Inner power after LPI = Incident + CBET from outers – BS – Langmuir and SRS heating
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Summary: “two-stream” thermal flux limit reduces CBET to 
inner beams and enhances glint

• Glint = (1-absorption)*(inner power after LPI)
• Inner power after LPI = Incident + CBET from outers – (Langmuir and SRS heating)

Langmuir heating Hotter electrons, less CBET  less glint
or two-stream but different places less absorption  more glint

compete

Langmuir heating Two-stream Both – closest to 
drive, shape data

Electron Temp. Up in LEH Up throughout fill Way up in LEH

CBET to inners Down Down Way down

Glint Down a bit Way up Up

X-ray bangtime ~ same Way later Later, ~ experiment

Langmuir heating Two-stream Both – closest to 
drive, shape data

Electron Temp. Up in LEH Up throughout fill Way up in LEH

CBET to inners Down Down Way down

Glint Down a bit Way up Up

X-ray bangtime ~ same Way later Later, ~ experiment

Compared to
Base case

Langmuir heating Two-stream Both – closest to 
drive, shape data

Electron Temp. Up in LEH Up throughout fill Way up in LEH

CBET to inners Down Down Way down

Glint Down a bit Way up Up

X-ray bangtime ~ same Way later Later, ~ experiment

Compared to
Base case

Langmuir heating Two-stream Both – closest to 
drive, shape data

Electron Temp. Up in LEH Up throughout fill Way up in LEH

CBET to inners Down Down Way down

Glint Down a bit Way up Up

X-ray bangtime +140 ps +1100 ps +640 ps, ~ experiment



LLNL-CONF-707282

4

We model with Lasnex NIF shot N121130: early “high-foot” plastic 
symmetry capsule

 Elaser = 1270 kJ   Plaser = 350 TW

 (l23, l30) - lout = (8.5, 7.3) Ang.

 CBET to inners: tune polar P2 shape

 CBET to 23’s: tune azimuthal M4 shape

 Fill 1.45 mg/cc He

 Gold hohlraum: “575 scale” 

Total
Outers
Inners
1/3 total

Incident laser power
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Inputs to runs: measured SRS power and maximum wavelength

50o outer cone

Incident
SRS
SBS
SRS+SBS

30o inner cone23o inner cone
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Lasnex two-stream flux limit: crude return current instability model

• Spitzer-Harm heat flux carried by e- with (2-4)vTe

• Zero net current  bulk electrons drift vs. ions

Ion acoustic drift instability if: 
• vD > sound speed
• Growth rate exceeds ion Landau damping   ZTe/Ti >> 1

q = e- heat flux = min(f*neTevTe, qSH)
f  = flux limit
f0 = user-specified = 0.15 here

𝑓−1 = 𝑓0
−1 +

𝑎2

1 + 𝑎2
𝑍𝑚𝑒
𝑚𝑖

1/2

𝑓 =
𝑍𝑚𝑒

𝑚𝑖

1/2

, 𝑎 ≡
𝑍𝑇𝑒
𝑇𝑖

≫ 1

 q = neTecsound

heat flux
carriers

𝛻𝑇𝑒 Bulk return 
current

vD

vz/vTe

ions

Electron distribution

f for Z/A = 0.25, e.g. Z=50 Au

ZTe/Ti

0.012
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Two-stream flux limit increases fill temperature –
especially with Langmuir heating
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Electron temperature [keV] at 13 ns – mid peak power

Two-stream

Base caseLangmuir heating1

Langmuir +
two-stream

Langmuir + two-stream

High Te reduces CBET 
and laser absorption

12 keV!

1D. J. Strozzi et al., Phys. Rev. Lett. (submitted)
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Langmuir heating and two-stream both reduce CBET to inners –
strong synergy

Incident

Langmuir heating

Both

Base case

Two-stream

Inner-cone power:
Incident + CBET – escaping backscatter
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Two-stream flux limit reduces laser absorption: “enhanced glint”

L. J. Suter sees similar enhanced glint with low flux limit:
O. S. Jones: UI3.3 - Thursday 3:00 pm

Un-absorbed
light: “glint”

Enhanced Glint

Hotter  less inverse brem. absorption

Glint: escaping laser power [TW]

Incident inners

Langmuir
heating

Both

Base case

Two-stream
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Two-stream flux limit: enhanced glint reduces total drive

Radiation temperature on capsule

x-ray bangtime: experiment – simulated [ps]
Base case: +650
Langmuir heating: +510
Both: +10     matches experiment! 
Two-stream: -450
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Capsule shape combines CBET, Langmuir heating, and glint

Measured x-ray self emission:
“Pancaked”, P2/P0 = -0.12

Simulated x-ray radiograph: “2D Convergent Ablator”
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Langmuir heating Both – pancaked, like data!

Base case Two-stream
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Conclusion: two-stream flux limit increase fill temperature, 
reduces CBET to inners, enhances glint, reduces x-ray drive

Future work
• Glint in SBS data – blueshifted light: reflect off inward-moving wall
• Te data: “micro-dot” (M. Barrios, CO5.1 this session), optical Thomson Scattering (~FY17)

• Improved model for return current instability
• Other flux inhibiters: 

• Nonlocal electron transport (J. Brodrick, CO5.11 this session)
• MHD (W. Farmer, CO5.7 this session)
• And their interplay

• SRS Langmuir waves  suprathermal or “hot” electrons: 
• Instead of fluid heating
• SRS-driven currents and B fields




