Interplay of Raman Scattering and Two-Stream Flux Inhibition in Hohlraum Dynamics (new)

Talk CO5.9

D. J. Strozzi, D. S. Bailey, T. Doeppner, L. Divol, J. A. Harte, P. Michel, C. A. Thomas

APS DPP 2016

31 October 2016

Special thanks to G. B. Zimmerman, H. Scott

LLNL-CONF-707282

Inner-beam "glint¹" recently appreciated as possible significant energy loss from NIF hohlraums

"Inline" LPI models² in hydro codes:

- Cross-Beam Energy Transfer (CBET)
 - − Outer \rightarrow Inner + ion acoustic wave
- Stimulated Raman scattering (SRS)
 - Langmuir wave heating
 - SRS light absorption (minor)

Hohlraum energetics:

- Laser coupled to hohlraum = Incident Backscatter Transmitted
- Transmitted = "Glint" = (1-absorption)*(inner power after LPI)
- Inner power after LPI = Incident + CBET from outers BS Langmuir and SRS heating
 - ¹ D. Turnbull, P. Michel, J. E. Ralph, L. Divol, et al., *Phys. Rev. Lett.* (2015)
 - ² D. J. Strozzi, D. S. Bailey, P. Michel, L. Divol, S. M. Sepke, G. D. Kerbel, et al., *Phys. Rev. Lett.* (submitted)

Summary: "two-stream" thermal flux limit reduces CBET to inner beams and enhances glint

- Glint = (1-absorption)*(inner power after LPI)
- Inner power after LPI = Incident + CBET from outers (Langmuir and SRS heating)

Compared to Base case	Langmuir heating	Two-stream	Both – closest to drive, shape data
Electron Temp.	Up in LEH	Up throughout fill	Way up in LEH
CBET to inners	Down	Down	Way down
Glint	Down a bit	Way up	Up
X-ray bangtime	+140 ps	+1100 ps	+640 ps, ~ experiment

We model with Lasnex NIF shot N121130: early "high-foot" plastic symmetry capsule

- E_{laser} = 1270 kJ P_{laser} = 350 TW
- $(\lambda_{23}, \lambda_{30}) \lambda_{out} = (8.5, 7.3)$ Ang.
- CBET to inners: tune polar P2 shape
- CBET to 23's: tune azimuthal M4 shape
- Fill 1.45 mg/cc He
- Gold hohlraum: "575 scale"

Inputs to runs: measured SRS power and maximum wavelength

Lasnex two-stream flux limit: crude return current instability model

- Spitzer-Harm heat flux carried by e- with $(2-4)v_{T_{a}}$
- Zero net current \rightarrow bulk electrons drift vs. ions

Two-stream flux limit increases fill temperature – especially with Langmuir heating

Langmuir heating and two-stream both reduce CBET to inners – strong synergy

Two-stream flux limit reduces laser absorption: "enhanced glint"

L. J. Suter sees similar enhanced glint with low flux limit: O. S. Jones: UI3.3 - Thursday 3:00 pm

Two-stream flux limit: enhanced glint reduces total drive

Radiation temperature on capsule

x-ray bangtime: experiment - simulated [ps]
Base case: +650
Langmuir heating: +510
Both: +10 matches experiment!
Two-stream: -450

Capsule shape combines CBET, Langmuir heating, and glint

Conclusion: two-stream flux limit increase fill temperature, reduces CBET to inners, enhances glint, reduces x-ray drive

Future work

- Glint in SBS data blueshifted light: reflect off inward-moving wall
- T_e data: "micro-dot" (M. Barrios, CO5.1 this session), optical Thomson Scattering (~FY17)
- Improved model for return current instability
- Other flux inhibiters:
 - Nonlocal electron transport (J. Brodrick, CO5.11 this session)
 - MHD (W. Farmer, CO5.7 this session)
 - And their interplay
- SRS Langmuir waves → suprathermal or "hot" electrons:
 - Instead of fluid heating
 - SRS-driven currents and B fields

