Inline Modeling of Cross-Beam Energy Transfer and Raman Scattering in NIF Hohlraums

APS-DPP Meeting 17 November 2015 D. J. Strozzi, D. S. Bailey, C. A. Thomas, S. M. Sepke, G. D. Kerbel, P. Michel, L. Divol

LLNL-CONF-679028

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Cross-beam energy transfer (CBET) is used to control shape in hohlraums with high gas fill densities

- Low-foot and high-foot designs
- CBET from pump to probe with lower frequency in plasma frame
- Stimulated Raman scattering (SRS): Laser photon \rightarrow scattered photon + Langmuir wave

Hotspot x-ray image

Prolate = 'Sausaged'

Oblate = 'Pancaked'

More $\Delta \lambda = \lambda_{in} - \lambda_{out}$: More transfer to inners

Modeling shape in hohlraums is a significant challenge

Old script-based process [not shown here]

- 1. Rad-hydro run: no CBET or backscatter removed
- 2. CBET post-processing script [P. Michel]
- 3. 2nd rad-hydro run with CBET and SRS removed
- Gives more sausaged implosion than data
- Limit CBET with clamp on ion wave amplitude $\delta n_e/n_e$

Inline CBET, SRS removed at lens [D. Strozzi, APS-DPP 2014]

- CBET calculated internally
- Ion-wave energy deposition

Versus script:

- Picket: less CBET, due to inverse brem.
- Peak power: CBET similar

This talk: Inline CBET and SRS

- Pump laser depleted in target
- Langmuir-wave deposition
- Inverse brem. of SRS light

Summary of inline SRS results:

- Langmuir waves driven near laser entrance
- LEH hotter: reduces CBET
- Produces more pole x-ray drive
- Less need for δn_e clamp to agree with shape data

We use inline CBET and SRS models to simulate NIF shot N121130: an early high-foot plastic symcap

Shot description:

- E_{laser} = 1270 kJ P_{laser} = 350 TW
- $(\lambda_{23}, \lambda_{30}) \lambda_{out} = (8.5, 7.3)$ Ang.
- CBET to inners: tune P2 shape
- CBET to 23's: tune azimuthal M4 shape
- Gold hohlraum: "575 scale", fill 1.45 mg/cc He

Two rad-hydro runs:

- Lagrange mesh management
- High-flux model: DCA opacities, f=0.15 electron flux limit
- Inline CBET, saturation clamp $\delta n_e/n_e = 10^{-3}$
- "Lens SRS" run: SRS light removed from incident laser
- "Inline SRS" run: Inline model of SRS

Inline SRS model: 1D coupled-mode equations in post-resonant region

Inline SRS depletes inner beams more than SRS removed at lens: Langmuir waves and SRS inv. brem.

Inputs to inline runs: measured SRS power and maximum wavelength

Lawrence Livermore National Laboratory

Inline SRS does not change total x-ray drive, makes implosion more pancaked

Inline SRS gives slightly less CBET to inners than SRS removal at lens

SRS Langmuir waves dominate SRS inverse brem, mostly driven just inside LEH

Inline SRS model increases LEH temperature, decreases it at equator

Summary: inline SRS model heats LEH, reduces CBET, gives more pancaked shape

	Inners	Outers	SRS heating
	"Cone Fraction:" % of incident laser		
Incident	32	68	0
Escaping backscatter	15	0	0
CBET	+29 / + <mark>24</mark>	-29 / - <mark>24</mark>	0
SRS heating	0 / -11	0	0 / +11
lens SRS / inline SRS			
	Post-LPI: % of incident – backscatter + CBET		
	53 / <mark>35</mark>	47 / <mark>52</mark>	0 /13
Occurs near LEH; increases polar x-rays			

BACKUP BELOW

Path towards agreement with measurements: implosion shape, LEH temperature ("micro-dot" spectroscopy):

- Replace $\delta n_{\rm e}$ CBET clamp with better CBET physics, saturation model
- Electron transport: non-local effects, return current instability, Langmuir heating as superthermal electrons (fluid T_e shown here)

Power to inners / incident

e- density and pressure

Maps at 13 ns (mid peak power)

Lawrence Livermore National Laboratory LLNL-PRES-XXXXXX

