Modeling of NIF Laser-Plasma Interaction Experiments with Single and Multiple Beams

APS-DPP

1 November 2012
D. J. Strozzi, J. D. Moody, H. F. Robey, L. Divol, P. Michel, R. L. Berger, E. A. Williams, D. E. Hinkel, D. C. Eder

Lawrence Livermore National Lab

Tang reflectivity model gives transfer consistent with symmetry

- Done on recent keyhole shots - J. Moody, prior talk
- Symmetry data: transfer from outers increases inner beam power by $\sim 70 \%$
- Single- vs. multi- beam shots: direction of change in reflectivity is consistent with transfer to inners
- But magnitude of reflectivity change, with assumption of constant reflectivity, requires more transfer than symmetry data
- Reflectivity must increase with post-transfer power
- Tang model: reflectivity with pump depletion
- Inner-beam SRS: 70\% transfer - matches symmetry!
- Outer-beam SBS: 66\% transfer - matches symmetry AND inner SRS!!

Cross-beam energy transfer affects backscatter

Inner-beam power increases by 70% to match shape of x-ray emission from imploded core

cross-beam energy transfer inner wavelength > outer wavelength

Inner beam SRS rises when outers turned on

$$
P_{S R S}(\text { outers off })=0.28^{*} P_{\text {inc }}=0.4^{*} P_{\text {SRS }} \text { (outers on) }
$$

SRS spectrum on 30° beam similar with or without

 outersWavelength of max.
FABS measurement

Assuming constant reflectivity, inner-beam SRS is too large to be explained by transfer needed for symmetry
black $=$ measured red $=$ inferred

$$
\begin{aligned}
& P_{\mathrm{post}}=P_{\mathrm{inc}} *\left(1+f_{\mathrm{in}}\right) \quad \mathrm{f}_{\mathrm{in}}=\text { fractional increase of inner-beam power } \\
& P_{\mathrm{SRS}}=P_{\text {post }} * R\left(P_{\mathrm{post}}\right)
\end{aligned}
$$

- $P_{\text {SRS }}$ with outer beams increases by $1.5 x$

- To get that with constant reflectivity requires $\mathrm{f}_{\text {in }}=1.5$
- That's $>2 x$ the $f_{\text {in }}=0.7$ from symmetry data
\therefore Inner SRS reflectivity must increase w/ post-transfer power

Tang model of backscatter for inner-beam SRS

1. Single-beam gain set by expt. w/ outers off
2. Find transfer that gives measured $P_{\text {SRS }}$ when outers on

Single-beam experiment

$$
G=g^{*} P_{i n c}
$$

Tang formula with pump depletion

$$
\begin{aligned}
& \tilde{R}(1-\tilde{R}+\tilde{s})=\tilde{s} \exp [G(1-\tilde{R})] \\
& R=\frac{P_{\mathrm{BS}}}{P_{\text {post }}} \quad \tilde{R}=\frac{\omega_{0}}{\omega_{1}} R \\
& \tilde{s}=\frac{\omega_{0}}{\omega_{1}} \frac{P_{\text {seed }}}{P_{\text {post }}} \sim 10^{-9} \\
& G=g \cdot P_{\text {post }}
\end{aligned}
$$

Tang model allows us to numerically solve for transfer that gives measured inner-beam SRS

Assuming Tang reflectivity, the SRS data give $\mathrm{f}_{\text {in }}=0.7$ - agrees with symmetry!

Outer-beam SBS increases significantly when inner beams turned off - no transfer to inners

- $P_{\text {SBS }}$ decreased by $0.61 x$ when $P_{\text {inc }}$ increased by $1.38 x$ and inners turned on - Impossible without transfer to inners
- To get that with constant reflectivity requires $\mathrm{f}_{\mathrm{in}}=1.12$
- Exceeds the $\mathrm{f}_{\mathrm{in}}=0.7$ from symmetry data
\therefore Outer SBS reflectivity must increase w/ post-transfer power

Tang model for outer-beam SBS gives transfer

 consistent with symmetry AND inner-SRS result!

Tang model predicts strong power scaling of outer-beam SBS, speckles mitigate this

- Speckles reduce predicted increase: Tang curve, less steep, smaller gain
- We think outer-beam SBS comes from gold, can be reduced by adding boron

Tang model with gain from single-quad experiments gives transfer consistent w/ symmetry

$$
P_{\mathrm{BS}}=P_{\text {post }} * R\left(P_{\text {post }}\right) \quad P_{\text {post }}^{\mathrm{in}}=P_{\mathrm{inc}}^{\mathrm{in}} *\left(1+f_{\mathrm{in}}\right) \quad P_{\text {post }}^{\text {out }}=P_{\mathrm{inc}}^{\text {out }} *\left(1-f_{\mathrm{in}} / 2\right)
$$

Symmetry data: $\mathrm{f}_{\mathrm{in}}=0.7$

30° beam SRS	$\mathrm{f}_{\text {in }}$	
hard saturation	1.5	too much transfer for symmetry
Tang model	0.7	predicts transfer that matches symmetry!

$\mathbf{5 0 ^ { \circ }}$ beam SBS	$\mathrm{f}_{\text {in }}$	
hard saturation	1.12	too much transfer for symmetry
Tang model	0.66	matches symmetry AND inner-SRS Tang!

Outer-beam SBS in steeply-rising part of Tang curve - unlike inner SRS
Single-beam gains: outer SBS $=20 \quad$ inner SRS $=39$

	power transfer from Hydra and cross-beam script
S	

Shot with outers off

Tang model gives 30° beam SRS in fairly saturated regime

Procedure:

1. Single-beam gain set by expt. w/outers truncated

$$
P_{S R S}=P_{x f r} \bullet R\left(P_{x f r}\right)
$$

2. Solve for $F_{x f r}$ to give measured $P_{\text {SRS }}$ when outers on

$$
P_{x f r}=P_{i n c} \cdot F_{x f r}
$$

$$
\begin{aligned}
\frac{P_{S R S}(\text { outers on })}{P_{S R S}(\text { outers off })} & =2.5 \quad \text { measured } \\
& =F_{x f r} \bullet \frac{R^{o n}\left(P_{x f r}\right)}{R^{o f f}} \\
& =2.5 * 1 \quad \text { hard saturation } \\
& =1.7 * 1.47 \text { Tang model }
\end{aligned}
$$

- Symmetry $\rightarrow F_{x f r}=1.7 \leftrightarrow 35 \%$ outer power transferred $\left(P_{\text {out }}{ }^{\text {inc }}=2 P_{i n}{ }^{\text {inc }}\right)$
- Hard saturation (R constant): $\mathrm{F}_{\mathrm{xfr}}=2.5$ - too big for symmetry
- Tang saturation (R varies $\mathrm{w} / \mathrm{P}_{\mathrm{xfr}}$): $\mathrm{F}_{\mathrm{xfr}}=1.7$, agrees $\mathrm{w} /$ symmetry!

Modest re-amplification of inner SRS by outers

 consistent with symmetry and constant reflectivityhard saturation: $\mathrm{R}=$ constant maximize transfer and re-amp.

$$
P_{S R S}=P_{i n c} \bullet F_{x f r} \bullet R \bullet \exp \left[G_{r e-a m p}\right]
$$

