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ABSTRACT

The stochastic motion of ions in the presence of a background magnetic field and electrostatic waves is
of interest in both laboratory and space plasmas. Ion heating can be achieved by a single perpendicular
or oblique wave driving particles into chaotic dynamics [C. Karney, Phys. Fluids 21,9 (1978), G.
Smith, A. Kaufman, Phys. Fluids 21,12 (1978)].

A spectrum of multiple waves allows for phenomena not possible with a single wave. For instance, ions
can be coherently accelerated from low perpendicular energies to the stochastic region by two waves

whose frequencies wy, wy differ by an integer multiple of the cyclotron frequency [D. Bénisti, A. K.
Ram, A. Bers, Phys. Plasmas, 5,9 (1998)]:

w; — wo = Nwy;

It has recently been shown that two perpendicular waves may explain the high-energy tail of H* and
O™ distributions in the upper ionosphere [A. K. Ram, A. Bers, D. Bénisti, J. Geophys. Res., 103,A5
(1998)].

We show that waves with finite parallel wavenumbers kq,, ko, can also produce coherent acceleration.
This occurs provided the parallel wavenumbers are sufficiently close to each other, regardless of how
large they are. The resonance condition applies to the Doppler-shifted wave frequencies:

(wl - klzvz> - (WQ — szvz) — chi

A nonzero ki, — ko, leads to coherent motion in v, as well as perpendicular energy. A change in v,
leads to a breakage of the resonance condition, and leads to a severe limitation of the coherent motion.
This is similar to what happens for frequencies that do not differ by exactly an integer multiple of w,;.



OUTLINE

e One Perpendicular Wave: Stochastic region for gyroradius k,p 2 w/we
® W, — wy = Nw,: Resonant Hamiltonian which describes coherent motion

e T'wo Perpendicular Waves

— Coherent acceleration of low-energy ions to stochastic region
— Coherent range in p scales linearly with wave frequency
— Period of coherent oscillation scales like w{

— Departure from resonance: w; — wy = Nw, + Aw, “bandwidth” Aw where coherent motion

persists scales like w;*

e Two Oblique Waves
— Stochastic Motion: Lower bound in p similar to one-wave case, but upper bound lower; motion
in p and v, stochastic
— k1, = ky.: Coherent motion in p persists, similar to perpendicular waves
— ki1, # ko, v, evolves coherently

— k1, # ko.: Small difference ki, — ko, can severely limit coherent energization:
Ion sees Doppler-shifted wave frequencies, which depart from resonance as v, evolves coherently



Equations of Motion

e [on moving in two electrostatic waves and uniform B:

e Hamiltonian formulation: ki1
hp, Z,t) = L5 — z9)” + Z €; cos(kipx + kiz — vit) / :
i

e Gyro-Variables:

2
v
p=/vi+ UZ = gyroradius I = % = perp. energy ¢ = arctan (——y) = gyrophase
v

X

e Hamiltonian for gyro-variables:

H(]7 Uz, ¢7 2, t) =1+ %Uz + Z € COS(]C,;;I;,O sin ¢ + ]fzsz - I/it>

1




One Perpendicular Wave: Stochastic Region in p

[C. Karney, Phys. Fluids 21,9 (1978), C. Karney, A. Bers, Phys. Rev. Lett. 39,9 (1977)]
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Coherent Motion when v; — 1, an Integer

[D. Bénisti, A. K. Ram, A. Bers, Phys. Plasmas 5,9 (1998)]

Second-order resonance: v — vy = N = integer Initial condition: v,; =0
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Coherent Motion: Lie Perturbation Technique

[A. Lichtenberg, M. Lieberman, “Regular and Stochastic Motion.” Springer-Verlag (1992), J.Cary, Physics Reports
79,2 (1981)]

x = (p,q) = physical coordinates T = (p,q) = new coordinates
H (z) describes resonant motion in H(x)

Dependence on perturbation parameter €, ensures * — Z is canonical:
o0x
Oe

= [z, w(z,1)]; Z(e=10) ==z

of 0 of 0
1f, gl = Z < 8(;: a}i — 31{2' 8;) = Poisson bracket w = “Lie generating function”

i
Coordinate transformation:

(Tf)(x) = /(@) f@)=2—Tr=2

Equation for T"

Transformed Hamiltonian:




Deprit Perturbation Series

[A. Deprit, Cel. Mech. 1 (1969)]

H=H,+eH +eHy+ ... H = Hy+e¢H, + ¢¢H,

Expand Lie generating function:
W = W1 + €Wr

Coordinate change T must be near-identity:

T=Tzr=x—cw,z]+ O

To keep T' near-identity, w; must remain small.

Expand H equation:

(@]
o~
o~

—_

= H, — H, ) ‘
‘D()ZUQ = 2<H3 - Hz) — {/wl:Hl -+ Hl] ‘

Dyf =

0
a—{ + [f, Hy] = derivative along unperturbed orbit

Choose H; to remove secularities in w; equation.



Two-Wave Perturbation Theory

H=H,+ H; Hy=1+ %vz H, = Z €; cos(kizpsin g + k;.z — v;t)

Unperturbed (¢; = 0) orbits: [ =const., v, =0, ¢=t, 2= 2.

O(e):
(&g + 0¢ + vzc‘?z)wl = Hl — H1 = Hl — Z EZJm(kmp) cos(mgb + kzzz — Vﬂf)
No resonant terms:
= 1Ym k@x .
H, =0 wy = — Z — i‘?yf_ ]{Zi’l)z) sin(mo + ki,z — v4t)

,m

O(e?) -
((% + (9¢ + vzﬁz)wl = 2[:12 — [wl, Hl]

(w1, Hy] gives terms containing

cos [(m —n)p — (11 — o)t + (k1. — ks.)2]

v, — 1 € Z : Resonate along unperturbed orbits — secular growth in ws.

Hy =

(resonant terms in |wq, H1))

DO —




Second-Order Hamiltonian for Coherent Motion

Coherent Hamiltonian: H(I,v.,9,%) = %52 + So(I,5.) + S_(I,0.) cos(Nib + Ak.7)
) = ¢ — t = angle in rotating gyro-frame N =v; — 1n Ak, = ki, — ko.
Sp, S_ are second-order in wave amplitudes: Sy ~ €7, €3 S_~ €6

e Barred coordinates differ from physical coordinates by incoherent fluctuations, e.g.:

I:i—QE:mJA&MhMWMMJ%Z—ww+0@%

m — v

m

Coherent Motion in v.

e H is a constant of the motion. Second constant of the motion:

d Ak, - Ak, -
—(%—_NI)ZO — U, = V0 + ——( — 1)




Bounds of coherent motion

® U, 1s a function of I:

2

H = Yo.(I)* + So(I) + S_(I) cos(Nyp — Ak.z)

_ H—1v? -8
cos(Nyp — Ak, z) = 27
S_
|cosz| <1 — |H — 107 — Sp| > | S| forbidden
Potential barriers:
Hy(I) =10l + 5y £+ |S| H <H<H,

Turning points in I:
H=1+S,+]5]

Occur when

Ny — Ak,z =mn



Mi = Vi —

Expressions for the S’s

Sow + SOZ
1
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Two Perpendicular Waves: Scaling with wave frequencies

1A
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§

e Range of motion in £ does not change much with 4.
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Period of Coherent Oscillation for Perpendicular Waves

e coherent motion is oscillatory in I with a period > cyclotron period.

For 11 = 15 and €1 = €9,

2T Vf

N(dg/dt) ~ Né

Period scaling: T

e Increasing wave frequency vastly increases period of coherent motion.

Period for Orbits of H vs. v scaling
lines match 7 at vy = 40.37
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1 — 5 not an Integer: “Bandwidth” for Coherent Motion

vy — 15 = N + Av : resonant terms for Ay = 0 are near-resonant

H=—Avl+Sy+S_cos Ny

Av, : Critical Av when —AvI dominates over Sy term and starts limiting motion
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v, =

2

Oblique Waves with ki, = k9, : Coherent Motion in p

Ak
V20 + Nz

p vs. t for 45° waves
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Oblique Waves with k;, # k., : Coherent Motion Limited

UV, = U, + Aj\lfz(]_ — 1y) Ak, # 0 : small coherent motion in v,

p vs. t for k1, =0.001, ks, =0 v, vs. t for k1, = 0.001, ks, =0
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k1. # ko, : Potential Barriers Pulled Closer

Hj:, %Y_Jg for klz = 0005, kzz =0
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k1, # ko, : Departure from v, — v, = integer

/ ¥ — / ‘
O—> ©)
Vz VZ=O

R Z,BO

wave freq: vio wave freq: vio-KizVz
ion z velocity: vz ion z velocity: 0
Ion sees Doppler-shifted frequencies: v; = Vg — k;U,
Resonance condition: V1 — Uy =1y — Vg — DNkv, =N

o AL. # 0 : v, changes coherently, resonance condition cannot stay satisfied.

Heating a Distribution in v,

Lab frame: v.(t = 0) = v,
Resonance condition: Vg — Vog — Ak,v.0 = N

e Ak, = 0 : Resonance for v1g — 199 = IN. All ions resonate. Ions with larger k;.v.q see smaller v;.

e Ak, = 0 : Only certain v, resonate: |v.oy = % N=1223,..




CONCLUSIONS

e Coherent Energization to stochastic region possible for oblique waves provided (k1, — ks.) is small
e k1. # ko, leads to coherent motion in v,, which Doppler shifts waves away from resonance
e Lower wave frequencies wy, wy are “more favorable:”

— Departure of (w1 — ws)/we; from an integer, and ky, from ks, that still permit coherent ener-
gization scale like w;* and w; ?, respectively

— Period of coherent oscillation scales like w{

Questions? Comments? Reprints?




