STOCHASTIC PARTICLE MOTION DUE TO MULTIPLE ELECTROSTATIC WAVES

D. J. Strozzi, A. K. Ram, A. Bers

Plasma Science and Fusion Center Massachusetts Institute of Technology Cambridge, MA 02139. U.S.A.

Supported by NSF/DOE Grant DE-FG02-99ER54555, NSF Grant ATM 98-06328, DOE Grant DE-FG02-91ER54109

43rd Annual APS-DPP Meeting
Long Beach, CA
Poster QP1.096
1 November 2001

ABSTRACT

Stochastic motion of particles in the presence of a background magnetic field and electrostatic waves is of interest in both laboratory and space plasmas. Ion heating in fusion experiments can be achieved by a single wave driving particles into chaotic dynamics. Wave mechanisms are also believed to account for the energization of ions from the ionosphere to the magnetosphere. In particular, it has recently been shown that two perpendicular waves may explain the high-energy tail of H^{+}and O^{+}distributions in the upper ionosphere (Ram et al, J. Geophys. Res., 103:A5, 1998).

In a uniform magnetic field \vec{B}_{0}, one perpendicular wave causes particles within a range of perpendicular energies to move stochastically when the wave amplitude exceeds a threshold (Karney, Phys. Fluids 21(9), 1978). Two perpendicular waves whose frequencies differ by an integer multiple of the cyclotron frequency $\left(\omega_{1}-\omega_{2}=N \Omega\right)$ can coherently accelerate particles from low energies into the one-wave chaotic regime. We show that oblique waves can also produce coherent acceleration, provided their parallel wavenumbers are sufficiently close. The resonance condition now applies to the Doppler-shifted wave frequencies: $\omega_{1}-\omega_{2}-v_{z}\left(k_{1 z}-k_{2 z}\right)=N \Omega$. The coherent evolution of v_{z} is proportional to $k_{1 z}-k_{2 z}$, so that N varies over time and does not stay an integer when the k_{z} 's differ. This effect does not qualitatively alter the coherent motion when the variation in N is small.

Poster Outline

- Stochasticity with one perpendicular wave
- Coherent acceleration with two perpendicular waves into stochastic region
- Multiple timescale analysis for coherent acceleration
- Effects of finite $k_{\|}$and parallel dynamics
- Phase dependence of coherent acceleration (including relative angle perpendicular to \vec{B}_{0})

Particle Equation of Motion

- Particle moving in uniform background $\vec{B}_{0}=B_{0} \hat{z}$ and fixed electrostatic waves (no feedback of particles on waves):

$$
m \ddot{\vec{x}}=q \sum_{i=1}^{2} E_{i} \hat{k}_{i} \sin \left(\vec{k}_{i} \cdot \vec{x}-\omega_{i} t\right)+q \vec{v} \times \vec{B}_{0}
$$

- Nondimensionalize time to $\Omega \equiv q B_{0} / m$, length to typical k^{-1} :

$$
\begin{gathered}
\ddot{\vec{x}}=\sum_{i} \vec{\epsilon}_{i} \sin \left(\vec{k}_{i} \cdot \vec{x}-\nu_{i} t\right)+\vec{v} \times \hat{z} \\
\vec{\epsilon}_{i} \equiv \frac{q k E_{i}}{m \Omega^{2}} \hat{k}_{i}=\left(\frac{\omega_{B}}{\Omega}\right)^{2} \hat{k}_{i}, \quad \nu_{i}=\frac{\omega_{i}}{\Omega}
\end{gathered}
$$

$$
\vec{k}_{1}=\left(k_{1 \perp}, 0, k_{1 z}\right), \quad \vec{k}_{2}=\left(k_{2 \perp} \cos \alpha, k_{2 \perp} \sin \alpha, k_{2 z}\right), \text { similar for } \vec{\epsilon}
$$

One Perpendicular Wave: Stochastic Motion

- Larmor radius $r \equiv \sqrt{v_{x}^{2}+v_{y}^{2}} / \Omega, \quad$ gyrophase $\phi \equiv \arctan \left(-v_{y} / v_{x}\right)$.
- Perpendicular dynamics chaotic for $\epsilon>\epsilon_{t h} \equiv \nu^{2 / 3} / 4$ and $\nu-\sqrt{\epsilon}<r<(2 / \pi)^{1 / 3}(4 \epsilon \nu)^{2 / 3}$ (Karney).
$\nu=40.47, \vec{k}_{1}=\hat{x}, \epsilon_{1}=3.2, \epsilon_{2}=0 . \quad$ Surface of $\operatorname{Section}(\phi=0)$

Stochasticity Threshold

Two Perpendicular Waves: Coherent Acceleration

- Two perpendicular waves $\left(\vec{k}_{i}=k_{i} \hat{x}\right)$ can coherently accelerate or decelerate particles and change their perpendicular energy.
- Particles in regular phase space for one wave can reach stochastic region (same lower bound as one wave with $\epsilon=\max \left(\epsilon_{1}, \epsilon_{2}\right), \nu=\min \left(\nu_{1}, \nu_{2}\right)$).
- Resonance with frequency difference:
$\nu_{1}, \nu_{2} \notin \mathcal{Z}, \quad$ but $\quad N \equiv \nu_{1}-\nu_{2} \in \mathcal{Z}$

Energization Depends on Phase

Oblique Waves

- Resonance condition is that the difference of the z Doppler-shifted frequencies is an integer:

$$
N \rightarrow \nu_{1}-v_{z} k_{1 z}-\left(\nu_{2}-v_{z} k_{2 z}\right)=\nu_{1}-\nu_{2}-v_{z}\left(k_{1 z}-k_{2 z}\right) \in \mathcal{Z}
$$

- Analysis strictly holds only for $N(t)=$ constant

Multiple Timescale Analysis

- Multiple timescale analysis yields equations with slow, second-order evolution.

$$
\delta \sim \frac{\Omega}{\omega} \quad T_{i}=\delta^{i} t \quad x(\vec{t})=\vec{x}_{0}\left(T_{0}, T_{1}, \ldots\right)+\delta \vec{x}_{1}\left(T_{0}, T_{1}, \ldots\right)+\ldots
$$

We order typical $\epsilon_{i} \sim \delta$ (waves enter at first order).

- Timescales: $T_{0}=\Omega^{-1}, \quad T_{1}=\omega^{-1}, \quad T_{2}=$ nonlinear timescale
- $O\left(\delta^{0}\right): \overrightarrow{x_{0}}=\left(r \sin \left(T_{0}+\phi\right), r \cos \left(T_{0}+\phi\right), v_{z 0} T_{0}\right)+\overrightarrow{C_{0}}$

Slow evolution of $r, \phi, v_{z 0}$ chosen to prevent higher-order \vec{x}_{i} 's from growing faster than \vec{x}_{0}.

- $O(\delta): r, \phi$ independent of T_{1}; get small-scale oscillations.
- $O\left(\delta^{2}\right): \vec{x}_{1} \cos \left(\vec{k}_{i} \cdot \vec{x}_{0}-\nu_{i} t\right)$ terms give resonant driving terms, nontrivial equations for r, ϕ.

Slow (Second-Order) Evolution of r, ϕ

- New constant of motion, "energy" H, exists to second order.
- Action $I \equiv r^{2} / 2$ conjugate to ϕ, construct Hamiltonian:

$$
\begin{gathered}
\frac{d \phi}{d t}=\frac{\partial H}{\partial I}, \quad \frac{d I}{d t}=-\frac{\partial H}{\partial \phi} \\
H \equiv S_{1 \perp}(I)+S_{1 z}(I)+\cos N(\phi+\alpha) S_{2 a}(I)+\sin N(\phi+\alpha) S_{2 b}(I) \\
\Rightarrow H=S_{1 \perp}+S_{1 z}+\cos \beta(I, \phi) \sqrt{S_{2 a}^{2}+S_{2 b}^{2}} \\
\beta \equiv N(\phi+\alpha)+\arctan \frac{S_{2 b}}{S_{2 a}}
\end{gathered}
$$

- Allows bounds to be put on H :

$$
\begin{gathered}
H_{ \pm}=S_{1 \perp}+S_{1 z} \pm \sqrt{S_{2 a}^{2}+S_{2 b}^{2}} \\
H_{-} \leq H \leq H_{+}
\end{gathered}
$$

- Gives rise to ϕ dependence of acceleration.

Expressions for S 's

- $J_{i m} \equiv J_{m}\left(k_{i \perp} r\right)=$ Bessel function, $\nu \equiv \nu_{1}-k_{1 z} v_{z}$
sum over $m=-\infty$: ∞

$$
\begin{aligned}
S_{1 \perp}= & -\frac{1 \epsilon_{1 \perp}^{2} J_{1 m}^{2}+\epsilon_{2 \perp}^{2} J_{2 m-N}^{2}}{1-(m-\nu)^{2}} \quad S_{1 z}=\frac{1 \epsilon_{1 z}^{2} J_{1 m}^{2}+\epsilon_{2 z}^{2} J_{2 m-N}^{2}}{(m-\nu)^{2}} \\
S_{2 a}= & -\frac{\epsilon_{1 \perp} \epsilon_{2 \perp}}{2}\left(\cos \alpha \cos (m \alpha)+\frac{\sin \alpha \sin (m \alpha)}{m-\nu}\right) \frac{J_{1 m} J_{2 m-N}}{1-(m-\nu)^{2}} \\
& +\frac{\epsilon_{1 z} \epsilon_{2 z}}{2} \cos (m \alpha) \frac{J_{1 m} J_{2 m-N}}{(m-\nu)^{2}} \\
S_{2 b}= & \frac{\epsilon_{1 \perp} \epsilon_{2 \perp}}{2}\left(\cos \alpha \sin (m \alpha)+\frac{\sin \alpha \cos (m \alpha)}{m-\nu}\right) \frac{J_{1 m} J_{2 m-N}}{1-(m-\nu)^{2}} \\
& -\frac{\epsilon_{1 z} \epsilon_{2 z}}{2} \sin (m \alpha) \frac{J_{1 m} J_{2 m-N}}{(m-\nu)^{2}}
\end{aligned}
$$

- Special case: $\alpha=0$, waves in $x-z$ plane:

$$
\begin{aligned}
& S_{2 a}=-\frac{\epsilon_{1 \perp} \epsilon_{2 \perp}}{2} \frac{J_{1 m} J_{2 m-N}}{1-(m-\nu)^{2}}+\frac{\epsilon_{1 z} \epsilon_{2 z}}{2} \frac{J_{1 m} J_{2 m-N}}{(m-\nu)^{2}} \\
& S_{2 b}=0 \\
& S_{1 \perp}+S_{1 z}-\left|S_{2 a}\right| \leq H \leq S_{1 \perp}+S_{1 z}+\left|S_{2 a}\right|
\end{aligned}
$$

ϕ Dependence of acceleration

- $H_{-}(r) \leq H(r, \phi) \leq H_{+}(r)$ puts bounds on r motion

$$
\begin{gathered}
\nu_{1}=40.47, \nu_{2}=n u_{1}+1, k_{1 z}=0.01, k_{2 z}=0.0101, \epsilon_{1}=\epsilon_{2}=3 \\
\alpha=0.2 \pi \text { strongly restricts motion }
\end{gathered}
$$

Parallel Dynamics

- Parallel dynamics linked to I via a constant (to second order) of the motion:

$$
K \equiv v_{z 0}-\frac{k_{1 z}-k_{2 z}}{N} I=\text { const }
$$

- $v_{z 0}$ evolution proportional to difference between parallel wavenumbers $k_{1 z}-k_{2 z}$.
- Slow change in $v_{z 0}$ destroys resonance condition by moving N away from an integer.

$$
\begin{aligned}
k_{1 z} \neq k_{2 z} & \Rightarrow N, v_{z 0} \quad \text { change over time } \\
& \Rightarrow \text { not exact resonance }
\end{aligned}
$$

$$
k_{1 z}=0.01, k_{2 z}=0.0101: \approx \text { Resonance }
$$

- Slow Evolution is Large-Amplitude Oscillation
- Amplitude, frequency of slow dynamics depend on initial ϕ

"Constancy" (no secular change) of K

$$
K \text { vs. } t, k_{1 z}=0.01, k_{2 z}=0.0101
$$

Large k_{z} 's Accelerate if Difference is Small

- Acceleration in z masked by first-order oscillations.

$k_{1 z}=0.01, k_{2 z}=0:$ Resonance Limited

r vs. t

v_{z} vs. t

SUMMARY AND FUTURE WORK

- Coherent acceleration by two perpendicular waves can be limited by $k_{\|}$.
- Multiple timescale analysis generalized to include parallel dynamics: second-order constant K.
- Resonance condition modified to $N=\nu_{1}-\nu_{2}-v_{z 0}\left(k_{1 z}-k_{2 z}\right)$.
- For small $k_{1 z}-k_{2 z}$, coherent acceleration persists.
- Phase dependence of acceleration explained by $H_{ \pm}$bounds, but not accurate when k_{z} 's differ.
- Synergism between perpendicular and oblique one-wave stochasticity with multiple waves?
- Evolution of distribution function? with broadband waves?

Questions? Comments? Reprint? Please leave e-mail

