Collisionless Hall-MHD
 Modeling Near a Magnetic Null

D. J. Strozzi
J. J. Ramos

MIT Plasma Science and
Fusion Center

Collisionless Magnetic Reconnection

Magnetic reconnection refers to changes in the structure of magnetic fields, brought about by processes outside of ideal MHD. A simple example is a change in magnetic field topology due to resistivity: a current sheet forms, and field lines diffuse within it (eg, the Sweet-Parker model).

Many astrophysical and laboratory instances of reconnection occur in basically collisionless regimes. We need a mechanism to explain reconnection without resistivity or other collisional effects, and ultimately predict the reconnection rate.

We use a fluid model with a collisionless Ohm's law that includes an electron pressure and Hall term. We show that this system's equilibrium can be described by two coupled Poisson-like equations. We solve this system numerically for an imposed poloidal cusp field. This system has nontrivial plasma properties, including the possibility to break the frozen-in law.

Our model applies in parameter regimes where $\mathrm{d}_{\mathrm{i}} \sim$ system size L and $\mathrm{d}_{\mathrm{e}} \ll \mathrm{L}$, such as those of the Versatile Toroidal Facility (VTF) experiment at MIT lead by A. Fasoli.

Governing Equations

Continuity: $\quad \frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \stackrel{\rightharpoonup}{v})=0$
Momentum : $\quad \rho \frac{d \vec{v}}{d t}=\vec{j} \times \vec{B}-\nabla p$
Ohm's Law: $\quad \vec{E}+\vec{v} \times \vec{B}=\frac{1}{e n m_{e}} \vec{j} \times \vec{B}-\frac{1}{e n} \nabla p_{e}+\frac{m_{e}}{e} \frac{D \vec{v}_{e}}{D t}$
State:

$$
T_{i}=0, \text { cold ions }
$$

$\vec{B} \cdot \nabla T_{e}=0, \mathrm{e}^{-}$isothermal along field lines
\rightarrow total pressure $p=p_{e}+p_{i} \approx p_{e}=n T_{e}$

In equilibrium, $\partial / \partial t=0$

Nondimensionalize equations using system size L, typical magnetic field B_{0}, density n_{0}, and Alfvén speed.

Continuity: $\quad \nabla \cdot(\rho \bar{v})=0$
Momentum: $\vec{v} \cdot \nabla \vec{v}=\vec{j} \times \vec{B}-\beta_{0} \nabla p$
Ohm's : $\quad \vec{E}+\vec{v} \times \vec{B}=\frac{d_{i}}{L} \frac{1}{n}(\vec{j} \times \vec{B}-\nabla p)+\left(\frac{d_{e}}{L}\right)^{2} *$ advective $\frac{D \vec{v}_{e}}{D t}$ terms
$d_{j}=$ inertial skin depth $=\frac{\mathrm{c}}{\omega_{\mathrm{pj}}}, \omega_{p j}=\sqrt{\frac{n_{j} q_{j}{ }^{2}}{\varepsilon_{0} m_{j}}}$

2-D Equilibrium, $\partial / \partial \mathbf{z}=0$

$\vec{B}=\hat{z} \times \nabla \psi+B_{z} \hat{z} \quad \rightarrow \quad \vec{j}=\nabla B_{z} \times \hat{z}+\nabla^{2} \psi \hat{z}$
Let $\vec{v}=\vec{u}+v_{z} \hat{z}$

Integrate Continuity : $\nabla \cdot(\rho \vec{u})=0 \rightarrow \quad \rho \vec{u}=\hat{z} \times \nabla \varphi$
Temperature a flux function : $\vec{B} \cdot \nabla T=0 \rightarrow \quad T=T[\psi]$

We drop terms of order $\left(\mathrm{d}_{\mathrm{e}} / \mathrm{L}\right)^{2}$, as they are small in many regimes of interest (eg, VTF). Since $d_{i} \sim L$ in VTF, we retain these terms \rightarrow non-ideal Ohm's Law.

Take z component and curl of Ohm's Law to eliminate electric field, which is $-\nabla \phi$ in equilibrium.

Reduction to Scalar PDEs

One can construct 4 equations of the form $\nabla(\psi$ or $\varphi) \times \nabla f=0 \rightarrow f=f[\psi$ or $\varphi]$. This gives :

$$
d_{i} B_{z}=F[\psi]-\varphi \quad d_{i} v_{z}=G[\varphi]+\psi
$$

$$
v_{z}=\frac{F^{\prime}[\psi]}{\rho} B_{z}+U^{\prime}[\psi]+\frac{d_{i}}{\rho}\left(j_{z}-\rho \log \left[\rho T^{\prime}[\psi]\right]\right)
$$

$$
\frac{1}{2} v^{2}-\frac{U[\psi]}{d_{i}}+T[\psi](1+\log \rho)=W[\varphi]
$$

System reduces to 2 PDEs:

$$
\begin{aligned}
& \nabla^{2} \psi=\rho T^{\prime}[\psi] \log \rho+d_{i}^{-1}\left(-F^{\prime}[\psi] B_{z}+\rho v_{z}-\rho U^{\prime}[\psi]\right) \\
& \nabla \cdot\left(\frac{1}{\rho} \nabla \varphi\right)=-\frac{B_{z}}{d_{i}}-\frac{v_{z} G^{\prime}[\varphi]}{d_{i} \rho}-\frac{W^{\prime}[\varphi]}{\rho} \\
& + \text { algebraic Bernoulli eqn. for } \rho
\end{aligned}
$$

Solving for ρ

$\log \rho+a+\frac{b}{\rho^{2}}=0, \quad a=1+\frac{1}{T}\left(\frac{1}{2} v_{z}{ }^{2}-W[\varphi]\right), \quad \mathrm{b}=\frac{|\nabla \varphi|^{2}}{2 T} \geq 0$
Let $r=\rho e^{a}, Q=b e^{2 a} \quad \rightarrow$

$$
-r^{2} \log r=Q
$$

At $r=r_{0}=e^{-1 / 2}, Q=Q_{0}=1 / 2 e=\operatorname{maximum} Q$
Existence of solutions : $Q<Q_{0}$
$r \approx r_{0}+\sqrt{Q_{0}-Q}+A\left(Q_{0}-Q\right)^{\alpha}$
poloidal Mach number $M^{2}=\frac{u^{2}}{c_{s}{ }^{2}}=\frac{|\nabla \varphi|^{2}}{\rho^{2} T}$

Free Functions

$$
\begin{aligned}
& T[\psi]=\frac{\beta_{0}}{1+\Sigma \psi^{2}}+T_{0}, \quad \text { we choose } \beta_{0}=0.01 \\
& F[\psi]=B_{z 0}+F_{1}[\psi], \quad F_{1}[\psi]=f_{1} \tanh [\psi / \sigma] \\
& G[\varphi]=-\frac{1}{\sigma} \operatorname{atanh}\left[\frac{\varphi}{F_{1}}\right]+G_{0} \\
& U[\psi]=0 \\
& W[\varphi]=T\left[F_{1}^{-1}[\varphi]\right]\left\{1+K\left[F_{1}^{-1}[\varphi]\right]\right\}+G_{0}^{2} / 2, \\
& \\
& K[x]=\log \left[A T^{-1 / 2}[x]\right]
\end{aligned}
$$

These choices ensure solutions of ρ equation exist on the boundary, where Q is largest.

Boundary Conditions

We want to simulate an externally imposed cusp field $\left.\rightarrow \psi\right|_{\text {bnd }}=2 x y$ Also choose $\left.\varphi\right|_{b n d}=F_{1}[2 x y]$. These choices give

$$
\left.B_{z}\right|_{b n d}=B_{z 0},\left.\quad v_{z}\right|_{b n d}=F_{1}[2 x y]
$$

$\left.u_{x}\right|_{x=c o n s t} \propto \operatorname{sech}^{2}[2 \sigma y] \rightarrow$ imposed normal flow drops off rapidly away from separatrix

Numerical Solution

We have two coupled Poisson-like PDEs for φ and ψ. We specify boundary conditions on a rectangle, and this determines the solution inside. We use finite differences, and treat the problem as a coupled, nonlinear system for φ and ψ at the discrete grid points.

Newton's method: quadratic convergence

Solve $f(u)=0, \mathrm{u}=\psi$ or φ. Taylor expand about a guess, u_{0}, near solution u_{*} :
$f(u)=f\left(u_{0}\right)+f^{\prime}\left(u_{0}\right)\left(u-u_{0}\right)+O\left(\left(u-u_{0}\right)^{2}\right)$.
Since $f\left(u_{*}\right)=0$,
$f\left(u_{*}\right)=0 \approx f\left(u_{0}\right)+f^{\prime}\left(u_{0}\right)\left(u_{*}-u_{0}\right)$

$$
u_{*} \approx u_{0}-f^{\prime}\left(u_{0}\right)^{-1} f\left(u_{0}\right)
$$

- Guess an initial u
- Compute the Jacobian $\mathrm{f}^{\prime}(\mathrm{u})^{-1}$
- Calculate new u
- iterate until average value of $f(u)$ is ~ 0, given roundoff error.

Implemented in MATLAB. Works blindingly fast: 3 to 5 iterations for convergence.

We set $\mathrm{d}_{\mathrm{i}}=\mathrm{L}$ and use a 2×2 domain in units of L . Discretized to 100×100 grid points.

$\underline{B}_{\underline{0} 0}=0$ Equilibrium

Density: confined, almost flux function

Temperature T[$\Psi]$

Poloidal B: close to cusp

$\mathbf{B}_{\mathbf{z}}$

$\mathbf{V}_{\mathbf{z}}$

$\underline{B}_{\underline{z}}>$ Poloidal B $\left(\mathrm{B}_{\underline{z} 0}=5\right)$

-Density, temperature, and poloidal B very close to $\mathrm{B}_{\mathbf{z 0}}=0$ case

B_{z} : shifted by $\mathrm{B}_{\mathrm{z} 0}=5$, no $<\mathrm{B}_{\mathrm{z} 0}$ ridges

Poloidal u

V_{z} (no negative ridges)

guide field breaks symmetry among quadrants

Possibility of Breaking Frozen-in Law

$$
\begin{gathered}
\frac{|\nabla \rho \times \nabla \psi|}{|\nabla \rho||\nabla \psi|} \neq 0 \\
\mathbf{B}_{\mathbf{z 0}}=\mathbf{0}
\end{gathered}
$$

$$
\mathbf{B}_{\mathbf{z 0}}=5
$$

Electric Field From Ohm's Law
$\mathrm{B}_{\mathrm{z} 0}=\mathbf{0}$

$B_{z 0}=5$

Relative Importance of terms, Integrated over domain

 Poloidal Ohm$$
\vec{E}_{p}+\vec{u} \times \vec{B}_{z}+\vec{v}_{z} \times \vec{B}_{p}=\frac{1}{n}\left(\vec{j}_{p} \times \vec{B}_{z}+\vec{j}_{z} \times \vec{B}_{p}-\nabla p\right)
$$

$\mathrm{B}_{\mathrm{z0}}=0$	0.64	$7.3 \mathrm{E}-6$	0.64	$1 \mathrm{E}-7$	1	1
$\mathrm{~B}_{\mathrm{zO}}>\mathrm{B}_{\mathrm{p}}$	0.23	1	1	0.023	0.4	0.37

Poloidal Momentum

$$
\vec{u} \cdot \nabla \vec{u}=\vec{j}_{p} \times \vec{B}_{z}+\vec{j}_{z} \times \vec{B}_{p}-\nabla p
$$

$$
\begin{array}{lrrrc}
\mathrm{B}_{\mathrm{z0}}=0 & 4.5 \mathrm{E}-3 & 1.6 \mathrm{E}-7 & 1 & 1 \\
\mathrm{~B}_{\mathrm{z} 0}>\mathrm{B}_{\mathrm{p}} & 4.6 \mathrm{E}-3 & 0.069 & 1 & 0.95
\end{array}
$$

- z-comp. of Ohm: $\vec{u} \times \vec{B}_{p}=\vec{j}_{p} \times \vec{B}_{p}, E_{z}=0$ up to roundoff
- z - comp. of Mom.: $\vec{u} \times \vec{B}_{p}=\vec{j}_{p} \times \vec{B}_{p}$ up to roundoff

Summary

- Hall-MHD equations simplified to 2 scalar PDEs
- Solutions exist with nontrivial plasma currents, flows, magnetic fields, and electric fields
- Possibility of breaking frozen-in law near separatrices since density not a flux function -nonzero flows needed for breaking frozen-in

Future Prospects

-Time-dependent problem

- Applied electric field (as in VTF)
-Estimate of reconnection rate

