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Collisionless Magnetic Reconnection

Magnetic reconnection refers to changes in the structure of 
magnetic fields, brought about by processes outside of ideal 
MHD.  A simple example is a change in magnetic field topology 
due to  resistivity: a current sheet forms, and field lines diffuse 
within it (eg, the Sweet-Parker model).

Many astrophysical and laboratory instances of reconnection 
occur in basically collisionless regimes.  We need a mechanism to 
explain reconnection without resistivity or other collisional 
effects, and ultimately predict the reconnection rate.

We use a fluid model with a collisionless Ohm’s law that includes 
an electron pressure and Hall term.  We show that this system’s 
equilibrium can be described by two coupled Poisson-like 
equations.  We solve this system numerically for an imposed 
poloidal cusp field.  This system has nontrivial plasma properties, 
including the possibility to break the frozen-in law.

Our model applies in parameter regimes where di~system size L 
and de<<L, such as those of the Versatile Toroidal Facility (VTF) 
experiment at MIT lead by A. Fasoli.



Governing Equations
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In equilibrium, ∂/ ∂t=0

Nondimensionalize equations using system size L, typical 
magnetic field B0, density n0, and Alfvén speed.
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2-D Equilibrium, ∂/ ∂z=0
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We drop terms of order (de/L)2, as they are small in many 
regimes of interest (eg, VTF).  Since di ~L in VTF, we retain 
these terms → non-ideal Ohm’s Law.

Take z component and curl of Ohm’s Law to eliminate electric 
field, which is -∇φ in equilibrium.



Reduction to Scalar PDEs

One can construct 4 equations of the form
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Solving for ρ
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Free Functions
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These choices ensure solutions of ρ equation exist on 
the boundary, where Q is largest.

Boundary Conditions
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Numerical Solution

We have two coupled Poisson-like PDEs for ϕ and ψ.  We specify 
boundary conditions on a rectangle, and this determines the solution 
inside.  We use finite differences, and treat the problem as a coupled, 
nonlinear system for ϕ and ψ at the discrete grid points.

Newton’s method: quadratic convergence
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• Guess an initial u
• Compute the Jacobian f'(u)-1

• Calculate new u
• iterate until average value of f(u) is ~ 0, given roundoff error.

Implemented in MATLAB.  Works blindingly fast: 3 to 5 iterations for 
convergence.

We set di=L and use a 2x2 domain in units of L.  Discretized to 100x100 
grid points.



Bz0=0 Equilibrium

Density: confined, almost flux function
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Bz0=0
Poloidal B: close to cusp
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Bz0=0 Poloidal u (magnitude~ 0.01vA)
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Bz0=0 Poloidal j: magnitude~10-4
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Bz > Poloidal B (Bz0=5)

•Density, temperature, and poloidal B very close to 
Bz0=0 case

Bz: shifted by Bz0=5, no <Bz0 ridges
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Bz0=5
Poloidal u
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Poloidal j (magnitude~1E-4)
guide field breaks symmetry among quadrants

Bz0=5
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Electric Field From Ohm’s Law
Bz0=0
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Relative Importance of terms, Integrated over domain
Poloidal Ohm
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Bz0=0   0.64     7.3E-6        0.64             1E-7             1          1

Bz0>Bp    0.23          1             1               0.023          0.4 0.37
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Poloidal Momentum

Bz0=0     4.5E-3         1.6E-7                1    1

Bz0>Bp 4.6E-3           0.069                1   0.95         
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Summary

• Hall-MHD equations simplified to 2 scalar PDEs
• Solutions exist with nontrivial plasma currents, 
flows, magnetic fields, and electric fields
• Possibility of breaking frozen-in law near 
separatrices since density not a flux function
•nonzero flows needed for breaking frozen-in

Future Prospects

•Time-dependent problem
•Applied electric field (as in VTF)
•Estimate of reconnection rate
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