Modeling Laser-Plasma Interactions in MagLIF Experiment on NIF

Anomalous Absorption Meeting

D. J. Strozzi, R. L. Berger, A. B. Sefkow, S. H. Langer, T. Chapman, B. Pollock, C. Goyon, J. Moody

5 May 2016

LLNL-CONF-690728

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

MagLIF shot on NIF gave excellent laser propagation and good agreement with modeling

Successfully demonstrated laser propagation at MagLIF fusion-gain scale

Summary: MagLIF NIF shots modeled with radhydro and LPI codes

Modeling tools

- HYDRA: ICF radiation-hydrodynamic code
 - Agrees with laser propagation down tube
 - Provides plasma conditions for LPI modeling
- Gain spectrum: linear gain exponents integrated along laser rays
 - 1D, linear, kinetic, fast no speckles, filamentation, nonlinear kinetics
- pF3D: paraxial envelope propagation code
 - Massively parallel, 3D NIF-relevant volumes [R. Berger, S. Langer Tuesday]

SRS: peak reflectivity ~ 0.3%, from fill gas

- Measured and gain spectra: close, contain two distinct wavelengths
- pF3D: two SRS wavelength groups: dominant one agrees with data

SBS: Peak reflectivity ~ 3% when laser hits Ta plate

- Gain spectrum close to data, but gain from gas not Ta
- pF3D modeling ongoing

MagLIF NIF shot follows standard NIF "warm" (293 K) surrogacy approach

NIF TARGET

- Gaspipe: 1 cm long, 1 cm diameter
- Thin window: 0.75 um polyimide
 - Use same warm and cryo
- MagLIF D₂ fill breaks window @ STP
- Use large hydrocarbon: match n_e
- Fill: neopentane C_5H_{12} @ 1 atm.
 - n_e = 0.116 n_{crit} fully ionized
 - Same n_e as D_2 at 3.5 mg/cm³
- No imposed B field: 10-20 T in 2017?

NIF LASER: well-conditioned

- Wavelength: 351 nm "3ω"
- One 30° cone quad (4 beams) Q31B
- Nominal phase plates, F=8 for quad
- "Checkerboard" polarization smoothing
- SSD: 45 GHz
- Focal spot: ellipse, radii (824, 590) um

Low power and intensity gave low backscatter, some SBS when laser hits Tantalum plate

- Laser hits Ta plate at 10 ns close to x-ray camera data
- Additional backscatter on NBI plate outside of lens ~ few *FABS: analysis ongoing

SRS data and gain spectrum qualitatively similar before 10 ns

- Main feature moves to shorter wavelength with time \rightarrow lower n_e
- Longer wavelength feature appears late in time

Plasma conditions from HYDRA run at 8.5 ns: peak measured SRS

HYDRA run:

- No MHD
- f=0.05 electron heat flux limit
- DCA non-LTE atomic physics

SRS at 8.5 ns: two features in data and gain spectrum

T_e chosen from pF3D results

pF3D^{*}: paraxial envelope light propagation code, massively parallel

^{*}R. L. Berger, C. H. Still, E. A. Williams, A. B. Langdon, Phys. Plasmas 1998

Light wave vector potential:

$$\vec{A}_{0}(\vec{x},t) = \frac{1}{2} \tilde{A}_{0}(\vec{x},t) \hat{p} \exp i(-\omega_{0}t + \phi_{0}) + cc$$
Slowly-varying
Fixed in xy plane

envelope

fixed, in xy plane

Envelopes evolved:

- Laser light
- SRS light 1 or 2 wavelength groups
- SRS Langmuir wave 1 or 2 groups
- SBS light
- SBS ion wave: no time enveloping

Background hydro w/ ponderomotive force:

- Filamentation
- Cross-beam energy transfer

Laser envelope equation:

pF3D "Letterbox" run for backscatter: routine vs. "heroic" 3D run

"Letterbox": slice in one transverse direction

• Same intensity distribution and speckle statistics as full beam

Laser Intensity in transverse plane

Computing resources

Spatial zoning: dx = dy = 2 λ_0 , dz = 3 λ_0 Plasma volume 1.9 mm³ Zones: 3.9 billion LLNL Sequoia machine: 8192 cpu's , ~ 1 day

Sample letterbox: D. Hinkel et al., Phys. Plasmas 2008

Peak SRS (8.5 ns): pF3D agrees with data: shorter wavelength SRS dominates, SBS small

Peak SRS: SRS develops at end of laser path

Late-time SBS gain spectrum consistent with data

Late-time SBS occurs when laser hits tantalum back plate: but where is it coming from?

SBS gain spectra late in time: most gain coming from gas, some at short wavelength from Ta

LLNL-CONF-690728

Conclusions and future work

Modeling

- HYDRA correctly gives laser propagation, based on x-ray camera data
- SRS: two wavelengths in gain and data, pF3D gives same dominant one as data
- SBS burst when laser hitting Ta back plate, but gain in gas at that time

Future NIF shots

- Push to higher backscatter risk:
 - Higher intensity
 - Higher fill density
- Cryogenic D_2 fill, thin window: ignition relevant, instead of warm surrogate C_5H_{12}
- Imposed B field: 10-20 T in 2017?

Warm C5H12 fill, no imposed B field:

Successful laser propagation at MagLIF fusion-gain scale

Cryogenic D2 fill, imposed B field:

Will test complete MagLIF scheme – to be done soon...

B. Pollock, R2-1: Prior talk More on expts

BACKUP BELOW

SBS shift in high Z plasma:

$$\delta\lambda[\text{\AA}] \approx 7.3 \left(\frac{Z}{A} T_e[keV]\right)^{1/2} \left(1 + \frac{\vec{u} \cdot \vec{k}_0}{c_{ac}}\right) \implies 4.9 \text{\AA} \quad \begin{array}{l} \text{Tantalum: A=181, Z=42} \\ \text{T}_e = 2 \text{ keV, u=0} \end{array}$$

