Magnetic Guiding for Electron Fast Ignition

D. J. Strozzi

Lawrence Livermore National Laboratory

42nd Anomalous Absorption Conference Key West, Florida, USA

June 28, 2012

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Security, LLC, Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Supported by OFES HEDLP project FI-HEDS, and LDRD project 11-SI-002. LLNL-CONF-562583

Magnetic pipes can guide electrons to fast-ignition hot spot

- Fast electron source:
 - too energetic to stop in DT hot spot
 - large angular divergence
- Imposed axial magnetic field ~50 MG overcomes divergence

- Magnetic mirroring: increasing field reflects electrons back to source
- Magnetic pipe: hollow field inside beam radius prevents mirroring
- Azimuthal pipe of right sign works better than axial pipe:
 - Agrees with expectation from orbits
- Sign of axial pipe matters!
 - Not based on orbits, or resistive Ohm's law E = η J_{return}
 - non-resistive terms in Ohm's law gives different field evolution
- Co-authors: M Tabak, D Larson, H Shay, L Divol, A Kemp, C Bellei, M Marinak, M Key

D Strozzi et al., submitted: Phys. Plasmas, arxiv.org/abs/1205.1594; IFSA 2011 proceeding

Fast ignition modeling at LLNL

Zuma: D. J. Larson: Hybrid PIC code for fast electron transport in collisional plasmas

- RZ cylindrical (this talk) or 3D Cartesian geometries
- Reduced dynamics: no light, plasma waves: $\omega \ll \omega_{pe}$, ω_{laser} , $k \ll k_{laser}$, λ^{-1}_{Debye}
 - Electric field from Ohm's law = massless momentum eq. for background electrons:

$$m_{e} \frac{d\vec{v}_{eb}}{dt} = -e\vec{E} + ... = 0 \quad \Rightarrow \quad \vec{E} = \vec{E}_{C} + \vec{E}_{NC}$$

$$\vec{E}_{C} = \vec{\eta} \cdot \vec{J}_{return} - e^{-1}\vec{\beta} \cdot \nabla T_{e} \qquad \vec{E}_{NC} = -\frac{\nabla p_{e}}{en_{eb}} - \vec{v}_{eb} \times \vec{B}$$
Resistive Ohm's law: $\vec{E}_{C} = \eta \vec{J}_{return}$

$$\vec{\eta}, \vec{\beta} \text{ from Lee-More-Desjarlais and Epperlein-Haines}$$
Relativistic fast electron advance: $\vec{F} = -e(\vec{E} + \vec{v} \times \vec{B})$
• Fast e- energy loss and angular scattering [Solodov, Davies]

•
$$\vec{J}_{return} = -\vec{J}_{fast} + \mu_0^{-1} \nabla \times \vec{B}$$

• $\vec{J}_{return} \cdot \vec{E}_C$ collisional heating
• $\frac{\partial \vec{B}}{\partial t} = -\nabla \times \vec{E}$ Faraday

Ampere w/o displacement current

Full Ohm's law results differ from E = η*J_{return} Nicolai et al., APS DPP 2010, Phys Rev E **84**, 016402 (2011)

Strozzi et al., IFSA 2011 (submitted)

Hybrid PIC code Zuma coupled to rad-hydro code Hydra (M. M. Marinak, D. J. Larson, L. Divol)

- This talk:
 - both codes in R-Z geometry, fixed Eulerian meshes
 - 20 ps transport (Zuma + Hydra), then 180 ps burn (just Hydra)

Electron spectra from PSC full-PIC sims (A. J. Kemp, L. Divol)

Idealized high-gain target: carbon cone, ideal ignition energy of 8.7 kJ

Ideal e- ignition energy [Atzeni et al., PoP 2007]:

• 2D rad-hydro, no cone, cylindrical beam heat source

minimum goal

• 527 nm (2 ω) wavelength laser: lowers T_{pond} ~ λ

Ignition energy is 15x ideal value with collimated electron source

PIC

10°

yes

full Ohm's

Realistic divergence greatly increases ignition energy; axial magnetic field 30-50 MG mitigates divergence

- Omega implosion experiments: compressed 50 kG seed field to: 30-40 MG (cylindrical¹), 20 MG (spherical²)
- Rad-hydro-MHD studies of B field compression have begun: H. D. Shay, M. Tabak

¹J. P. Knauer, Phys. Plasmas 17, 056318 (2010) ²P. Y. Chang et al., Phys. Rev. Lett 107(3):035006 (2011)

Axial magnetic field that increases in z leads to mirror force, reflects fast electrons

$$\nabla \cdot \vec{B} = 0 \quad \rightarrow \quad B_r = -\frac{1}{r} \int_0^r dr' r' \frac{\partial B_z}{\partial z}$$
$$\vec{F} = q \vec{v} \times \vec{B} \quad \rightarrow \quad F_z = -q v_\phi B_r$$

mirroring: F_z towards decreasing B_z

Magnetic pipe: hollow inside spot radius, avoids mirroring

Magnetic pipes: sign and direction (axial vs. azimuthal) matters

- So far I've used $B_z > 0$, the wrong sign sorry!
- Fast electrons self-generate azimuthal field in radial resistivity gradient: Robinson and Sherlock, Phys. Plasmas 2007

* Courtesy C. Bellei

Orbits of electrons in magnetic pipe fields

Orbits explain performance of B_{ϕ} signs, and B_{ϕ} vs B_z – but not role of sign(B_z)

Cartesian geometry: $(r,\phi,z) = (x,y,z)$

DJS: AA 2012 p. 13

Magnetic pipes in simplified, uniform plasma

Next page: Power = rate energy exits at right, $r < 20 \mu m$, at most 1.3 MeV per electron (~ stopping in hot spot)

Full Ohm's law gives different confinement based on sign(B₇):

ordering unchanged

Full Ohm's law: magnetic fields evolve differently than with $E = \eta J_{return}$, and for each sign (B_z)

Is fast ignition a pipe dream?

- Imposed, axial magnetic fields 30-50 MG recover ignition energy of artificiallycollimated electron source
- Magnetic mirroring in increasing field reduces benefit
- Mirroring overcome with magnetic pipes hollow out to e- source radius
- Pipe confinement best for one sign of B_{ϕ} beats either B_z sign
 - Orbits explain this
 - Fast e- can self-generate in radial resistivity gradient
- $B_z < 0$ pipe confines better than $B_z > 0$
 - Orbits don't explain this!
 - Nor does resistive Ohm's law $E = \eta J_{return}$
 - Full Ohm's law does: B fields evolve differently

D Strozzi et al., submitted: Phys. Plasmas, arxiv.org/abs/1205.1594; IFSA 2011 proceeding