Cone-Guided Fast Ignition with Imposed Magnetic Fields

D. J. Strozzi, M. Tabak, D. J. Larson, M. M. Marinak, M. H. Key, L. Divol, A. J. Kemp, H. D. Shay *LLNL*

Anomalous Absorption Conference 24 June 1011

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 Supported by LDRD project 11-SI-002 Release num. LLNL-CONF-488273

Our fast ignition modeling approach

Some trick, like imposed magnetic fields, is needed to achieve fast ignition with a realistic, divergent fast electron source

- Fast electron source generated by short-pulse laser characterized by PIC sims:
 - Energy spectrum has two temperature components, many electrons too energetic to stop in DT hotspot
 - Angle spectrum is divergent serious challenge!
- Transport modeling: hybrid PIC code Zuma coupled to Hydra rad-hydro code
- Imposed uniform axial magnetic fields > 30 MG mitigate divergence
 - Can be produced in an implosion with seed field ~ 50 kG
- Magnetic mirroring in non-uniform field prevents fast electrons from reaching fuel
- Hollow magnetic pipe can prevent mirroring

Fast electron source distribution found from explicit PIC laserplasma simulations with PSC code (A. Kemp, L. Divol)

- 3D Cartesian run, 1 μ m laser wavelength, pre-plasma with n_e ~ exp[z / 3.5 μ m]
- Intensity at vacuum focus (z = 10 μ m): I_{las}(r) = I₀ exp[-(r/18.3 um)⁸]
- I₀=1.37 E20 W/cm²

PIC fast electron energy spectrum is quasi two-temperature

- Same spectrum in source and extraction box
- Ignition DT hot spot: $\rho\Delta z \approx 1.2$ g/cm². Removes ~ 1.4 MeV from a fast electron (neglecting angular scatter)
 - Spectrum is too energetic to stop in hot spot

PIC fast electron angle spectrum is very divergent

- Field and background dynamics simplified to eliminate light and plasma waves: valid for $\omega \ll \omega_{\text{plasma}}, \omega_{\text{laser}}$ $k \ll k_{\text{laser}}, 1/\lambda_{\text{Debye}}$
 - Relativistic fast electron particle push: $\vec{F} = -e(\vec{E} + \vec{v} \times \vec{B})$
 - Fast e- energy loss (drag) and angular scattering: formulas of Solodov, Davies
 - $\vec{J}_{return} = -\vec{J}_{fast} + \mu_0^{-1} \nabla \times \vec{B}$ Ampere's law without displacement current
 - Electric field given by massless momentum equation for background electrons:

$$m_{e} \frac{d\vec{v}_{eb}}{dt} = -e\vec{E} + \dots = 0$$

$$\Rightarrow \vec{E} = \vec{\eta} \cdot \vec{J}_{return} - e^{-1}\vec{\beta} \cdot \nabla T_{e} - \frac{\nabla p_{e}}{en_{eb}} - \vec{v}_{eb} \times \vec{B}$$

$$\eta = \text{resistivity from Lee-More-Desjarlais}$$

$$\vec{E} = \eta \vec{J}_{return} \quad \text{Simple Ohm's law, used for this talk's runs}$$

$$\vec{J}_{return} \cdot \vec{E} \quad \text{Ohmic heating}$$

$$\cdot \frac{\partial \vec{B}}{\partial t} = -\nabla \times E \quad \text{Faraday's law}$$

Hybrid PIC transport code Zuma coupled to rad-hydro code Hydra (M. M. Marinak, D. J. Larson, L. Divol)

- Both codes run in cylindrical R-Z geometry on fixed Eulerian meshes (which can differ)
- Data transfer done via files generated by Overlink code [J. Grandy et al.]
- Typical run: 20 ps transport (Zuma + Hydra), then 180 ps burn (just Hydra)
 - 2-3 wall-time hours on 40 cpu's

• Hydra details: IMC photonics, neutron deposition turned off, no MHD package used

ignition-scale toy target with carbon cone

PIC-based source divergence gives prohibitive ignition energies; dramatically reduced if source is artifically collimated

Adding an initial, uniform, axial magnetic field B_z reduces ignition energy to that of artifically collimated beam

e- Larmor radius:

$$r_{Le} \propto \frac{\gamma \beta}{B} = \frac{33.4 \ \mu m}{B_{MG}} \left[W_{MV}^2 + 1.02 W_{MV} \right]^{1/2}$$

For a 2 MeV e- (roughly optimal to deposit energy in hot spot), $r_{Le} = 82$ um / B [MG]

 r_{Le} = spot radius (24 um) for B = 3.4 MG: lower bound on when B fields matter

Rad-hydro-MHD studies of B field compression have been started by H. D. Shay, M. Tabak

Omega experiments show compression of 50 kG seed B field in cylindrical implosions¹ to 30-40 MG, and in spherical implosions² to 20 MG

¹J. P. Knauer, Phys. Plasmas 17, 056318 (2010) ²P. Y. Chang et al., talk J05-2, APS-DPP 2010

Implosion can compress magnetic field in DT, but short-pulse LPI will likely happen in the seed field

Axial variation in magnetic field strength reduces hot-spot heating due to magnetic mirroring

$$B_{z}(r,z) = B_{z0} + (B_{z1} - B_{z0})G(r)H(z)$$

$$H(z) = \left(1 + \left(\frac{z - z_{0}}{\Delta z}\right)^{2}\right)^{-1}$$

$$G(r) = \exp\left[-(r/50 \ \mu \text{m})^{8}\right]$$

$$B_{r}(r,z) \text{ from } A_{\phi} \text{ to ensure } \nabla \cdot \vec{B} = 0$$

Axial variation in B_z gives rise to B_r , to satisfy div B = 0. Leads to mirror force in z direction.

Magnetic mirroring in cylindrical B field

We can circumvent mirroring with "magnetic pipe:" B₇₀ peaks off-axis

- Run with B_{z0} = 90 MG, E_{beam} = 87 kJ ignites
- Using $B_{z0} = 60$ MG, or narrower in z, or $E_{fast} = 43.4$ kJ all fail (<270 kJ fusion yield).
- Artifically collimated beam ($\Delta \theta = 10^{\circ}$) requires $E_{fast} = 87$ kJ to ignite.

Very little backward-going e-, unlike mirroring cases

Imposed magnetic fields may circumvent large fast-electron divergence for fast ignition, but mirroring is an issue

- Artificially collimated e- beam: ignition E_{fast} = 87 kJ
- Realistic PIC beam divergence: ignition E_{fast} ~ MJ's
- Uniform initial axial magnetic field > 30 MG: ignition E_{fast} = 100 kJ
- Non-uniform field peaking in fuel: fast e- reflected by mirror force
- Magnetic pipe: hollow radial profile: can recover ignition E_{fast} = 87 kJ

How can we assemble such fields in an implosion?

Backup slides beyond here

We are pursuing fast ignition for high gain and inertial fusion energy

M. Tabak, J. Hammer, M. E. Glinsky, et al., *Phys. Plasmas* 1, 1626 (1994).

Isochoric ignition hot-spot: T_{ion} > 4 keV and ρ *R*T_{ion} > 5 g cm⁻² keV

Atzeni and Meyer-ter-Vehn: *The Physics of Inertial Fusion*: p. 85. X_h = hot-spot value; ρ_c = density of surrounding cold fuel. $\rho_c = \rho_h$ for isochoric.

 $(\rho_c / \rho_b)^{1/2} = (1, 3-4)$ for (isochoric, NIC isobaric).

Isobaric ignition requires a smaller hotspot $\rho_h R_h T_h$ but more laser energy to achieve a larger ρ_c .

 $\rho^*R^*T_{ion}$ = max. at end of e- source pulse, centered on peak ion pressure.

We can circumvent mirroring with "magnetic pipe:" B_{z0} peaks off-axis

$$B_{z}(r,z) = B_{z0} + (B_{z1} - B_{z0})G(r)H(z)$$
$$G(r) = \exp\left[-\left(\frac{r - r_{0}}{\Delta r}\right)^{4}\right]$$
$$H(z) = \left[1 + \left(\frac{z - z_{0}}{\Delta z}\right)^{2}\right]^{-2}$$

Field type 2a: $B_{z0} = 0.1 \text{ MG}$, B_{z1} varies, $z_0 = 20$, $\Delta z = 50$, $r_0 = 30$, $\Delta r = 10$

Field type 2b: same as 2a, but $\Delta z = 100$

Magnetic field evolution governed by MHD frozen-in law

$$\partial_{t}\vec{B} = -\nabla \times \vec{E}$$

$$\vec{E} = -\vec{v}_{e} \times \vec{B} + \eta \vec{J}_{e}$$

$$\nabla \times \vec{B} = \mu_{0}\vec{J}_{e}$$

$$\frac{\partial}{\partial t}rB_{z} + \frac{\partial}{\partial r}v_{r}rB_{z} = \mu_{0}^{-1}\frac{\partial}{\partial r}\left[r\eta\frac{\partial B_{z}}{\partial r}\right]$$

Cylindrical geometry:

Су ii geometi y

$$\vec{B} = B_z(r,t)\hat{z} \qquad \text{magnetic flux} \quad \psi = \int_{r_1}^{r_2} da \ \hat{z} \cdot \vec{B} = 2\pi \int_{r_1}^{r_2} dr \ rB_z$$
$$\eta = \eta(r,t)$$
$$\vec{v}_e = v_r(r,t)\hat{r}$$
Let $\frac{dr_i}{dt} = v_r(r_i,t)$ follows plasma electron flow
$$\left[\text{Then } \frac{d\psi}{dt} = \frac{2\pi}{\mu_0} \left(r\eta \frac{\partial B_z}{\partial r} \right) \right]_{r_1}^{r_2}$$

Frozen-in law: magnetic flux between two surfaces moving with the plasma electrons changes only due to magnetic diffusion.

Mirroring with non-uniform imposed B-fields: effective beam energy partly follows mirror scaling

B field type	B _{z,fuel} / B _{z,exc}	mirror Φ
E	0.66	0.52 (mid)
F	0.34	0.24 (worst)
G	0.88	0.76 (best)

black: uniform B_{z0} =50 MG; mirror Φ = 1.

dense

fuel

E F Հայուրանայան հայուն

G

40

20

B_z (r=0)

e-source

Evidence of mirroring with non-uniform imposed B-fields: reflected fast electrons

Magnetic mirroring generalities (fully relativistic)

• div B = 0 implies $B_r(r,z) = -(r/2) dB_z / dz$

- Mirroring due to z force on a particle: $F_z = q v_{\perp} x B_r$
- Adiabatic limit: $\left|\frac{1}{B}\frac{dB}{dt}\right| << \text{cyclotron freq.}$
- Magnetic moment = adiabatic invariant: *not* exactly conserved, but change is small

$$\mu = \oint \vec{p}_{\perp} \cdot d\vec{l} = \pi \frac{c}{e} \frac{p_{\perp}^2}{B_z} \implies \frac{v_{\perp}^2}{B_z} = \text{const.}$$

$$v_z^2 + v_{\perp}^2 = \text{const.} \implies v_z^2 = v_{z0}^2 + v_{\perp 0}^2 \left(1 - \frac{B_z}{B_{z0}}\right) \qquad \text{turning pt:}$$

$$v_z = 0 \qquad \text{turning pt:}$$

$$u_z = 0 \qquad \text{turning pt:}$$

$$u_z = 0 \qquad \text{turning pt:}$$

$$u_z = 0 \qquad \text{turning pt:}$$

$$v_z = 0 \qquad \text{turning pt:}$$

$$u_z = 0 \qquad \text{turning pt:}$$

$$u_z = 0 \qquad \text{turning pt:}$$

$$v_z = 0 \qquad \text{turning pt:}$$

$$v_z = 0 \qquad \text{turning pt:}$$

$$u_z = 0 \qquad \text{turning pt:}$$

Ζ

Mirroring with our electron source

• e-source:
$$\frac{d^2 N}{dEd\theta} = \frac{dN}{dE} \cdot \frac{dN}{d\theta}$$
$$\frac{dN}{d\theta} = \sin\theta \exp\left[-(\theta/90 \text{ deg.})^4\right]$$
Number in loss cone:
$$F(\theta) = \int_0^\theta d\theta \ \frac{dN}{d\theta}$$
loss-cone fraction:
$$\Phi = \frac{F(\theta)}{F(\pi/2)}$$

DJS: AA Fast Ign. 2011 p. 25