Modeling of Electron-Driven Fast Ignition at Ignition Scale

D. J. Strozzi¹, M. Tabak¹, A. J. Kemp¹, L. Divol¹, D. P. Grote¹, M. H. Key¹, D. R. Welch², B. I. Cohen¹, R. P. J. Town¹ ¹Lawrence Livermore National Lab ²Voss Scientific, LLC

Anomalous Absorption meeting 16 June 2010

Summary: Divergent electron source pushes us to width > depth hot spots, large beam energies; need to try focusing tricks

- Electron source: from full PIC LPI simulations [A. Kemp, L. Divol]:
 - Angle spectrum: highly divergent, hard to hit small hot spot.
 - Energy spectrum: modified two-temperature, ponderomotive scaling with laser intensity. Large fraction of energetic electrons don't fully stop in hot spot.
- Width > depth ignition: to lower laser intensity, and subtend divergent beam, we consider larger radius beams and hot spots with width > depth. Hot spot Requires more deposited energy than small hot spot, but we can't hit a small spot!
- Ignition-scale transport simulations: with implicit PIC code LSP.
 - Ignition condition met with 85 kJ of e- beam energy, for 527 nm laser, 20 ps pulse, and *unrealistic* angular spectrum.
 - Realistic angular spectrum reduces energy in hot spot by ~50%; ~310 kJ needed for ignition.
 - Magnetic focusing shows promise Aluminum plug on-axis in C cone improves coupling.

depth

e-beam

Electron source from full-PIC LPI simulations with PSC code¹

- 3D Cartesian run, 1 μ m wavelength, pre-plasma with n_e ~ exp[z / 3.5 μ m].
- Peak dens = 100 n_{crit}. Particle data taken at time 365 fs.
- Intensity at best focus: $I_{las}(r) = I_0 \exp[-(r/18.3 \text{ um})^8]$ $I_0=1.37 \text{ E20 W/cm}^2$. Ponderomotive $T_{pond} = 4.63 \text{ MeV}$.
- Absorption = (incident reflected) light ~ 90% with pre-plasma.
- No pre-plasma has somewhat cooler spectrum, but lower absorption.

¹M. Bonitz et al., Introduction to Computational Methods in Many Body Physics (Rinton Press, Princeton, NJ, 2006), Vol. ISBN 1-58949-009-6, Chap. 2.

Angle spectrum is very divergent! Pushes us toward larger {laser energy, beam spots, hot spot radius}

$$\frac{dN}{d\Omega} = \exp\left[-(\theta/\Delta\theta)^5\right]$$

PIC energy spectrum: modified two-temperature; scaled ponderomotively

$$dN/dE = \frac{1}{E} \exp[-E/T_1] + \frac{n_2}{T_2} \exp[-E/T_2]$$

Note asymmetry in the two terms!

Plotted fit: $n_2 = 1.06$, $T_1 = 0.87$ MeV, $T_2 = 6.03$ MeV

In transport runs, we excite electrons w/ energies from $(0.1 - 5)T_{pond}$; assume 90% laser energy absorption.

Usefulness of energy spectrum descreases with laser intensity, but energy deposited still increases; green light better than red

Ignition requirements for fast ignition: width > depth mode

- Fuel: ρ ~300 g/cm³, ρ r>2 g/cm² should give energy gain ~ 100 w/ ~1 MJ compression laser.
- **Ignition energy:** TN burn not yet in our transport simulations. We rely on 2D rad-hydro studies by Atzeni et al.¹: Collimated, mono-energetic beam into spherical fuel.

One pays an energy penalty to ignite a width>depth hot spot, but it's the better choice if one's beam is too energetic or divergent – which our e- beams are.

¹S. Atzeni, A. Schiavi, C. Bellei, Phys. Plasmas 14, 052702 (2007)

Energy in hot spot vs. ignition energy is our figure of merit for our no-burn simulations

- **Ignition energy:** Atzeni used collimated, mono-energetic beams; we take his ignition energy as the energy one must deposit in the hot spot.
- **Hot-spot energy:** some deposited energy is lost, so we are generous in finding hot-spot energy.
- Hot spot construction: $\rho > 200 \text{ g/cm}^3$ and in depth $\rho^*\Delta z=1.2$ from cone side.

E_{hot-spot} = thermal + flow energy in all species

• Darwin Ho is performing Lasnex calculations with electron beam using realistic energy and angle spectra: next talk!

 $E_{hot-spot}$ / $E_{ignition}$ = figure of merit to compare runs; accurate ignition assessment requires simulations with burn.

LSP¹ direct-implicit PIC code for transport modeling: excited electron beam (no laser) propagating to ideal targets, RZ geometry, fluid background

¹D. R. Welch, D. V. Rose, M. E. Cuneo, R. B. Campbell, T. A. Mehlhorn, Phys. Plasmas 13, 063105 (2006)

No-standoff target, carbon cone, ~ 85 kJ beam energy, $\Delta \theta$ =30 deg (magic collimation): ignites with green light and 20 ps pulse

527 nm light, 20 ps pulse cases: profiles at run end (22 ps) for $\Delta \theta$ = 30, 90 deg

$\Delta \theta$ =90: bigger hot spot radius, less deep heating; beam hits fuel at glancing blow

Effect of angular spread $\Delta \theta$, on green light (527 nm), 20 ps pulse case

- Angular spread severely degrades coupling to hot spot.
- To recover ignition, need to add more energy, increase spot...
- Or figure out ways to collimate beam! Beam profile or resistivity gradients¹

$$\vec{J}_{\rm ret} \approx \vec{J}_{\rm fwd}, \quad \vec{E} = \eta \vec{J}_{\rm ret}, \\ \partial_t \vec{B} = -\nabla \times \vec{E} = \eta \nabla \times \vec{J}_{\rm fwd} + \nabla \eta \times \vec{J}_{\rm fwd}$$

¹A. P. L. Robinson, M. Sherlock, Phys. Plasmas 14, 083105 (2007)

Aluminum plug on axis, 10 μ m radius gives some collimation

D. J. Strozzi: Anom. Abs. 2010; p. 14

Azimuthal B fields (<0 is radially confining for v_z >0) and currents late in pulse (15 ps)

D. J. Strozzi: Anom. Abs. 2010; p. 15

Reaching ignition with $\Delta \theta$ = 90: about 310 kJ needed; weak dependence on beam area

Summary: toward electron-driven fast ignition

- **Electron source:** full-PIC simulations with pre-plasma show highly divergent angular spectra, and a modified two-temperature energy spectrum. Both facts make it hard to deposit energy in a small hot spot.
 - Can no pre-plasma help? Other laser-plasma interaction tricks?
- Width > depth ignition: we are pushed towards larger hot spots with $\rho^*r = 1-1.5 \text{ g/cm}^2$ and temperatures ~ 4-5 keV.
- **LSP Transport modeling:** Atzeni ignition condition can be achieved, with no conefuel standoff, with green (527 nm) laser:
 - E_{beam} = 85 kJ for unrealistic $\Delta \theta$ = 30 deg.
 - Coupling to hot spot 50% lower with realistic $\Delta \theta$ = 90 deg.
 - $E_{beam} \approx 310$ kJ in 2x area spot with $\Delta \theta = 90$ deg.
- **Magnetic collimation:** may reduce beam divergence, improve coupling.
 - Resistivity gradient: Aluminum plug in cone helps in $\Delta \theta$ = 90 deg case.

Collimation should be explored more, but at ignition relevant targets: scales, energies, pulse durations, geometries, etc.

Width > depth ignition regime

- Laser intensity: spectrum too energetic, minimize intensity flattop time pulse, spatial spot.
- **Temporal pulse:** balance between overcoming hot spot losses and making spectrum too energetic.

$$t_{\text{pulse}} = 54 \left[\frac{100 \text{ g/cm}^3}{\rho} \right]^{0.85}$$
 ps = 21 ps for $\rho = 300 \text{ g/cm}^3$ Atzeni optimal pulse length

LSP¹ implicit PIC code for transport modeling: excited electron beam (no laser) propagating to ideal targets

- Direct-implicit² particle push and electromagnetic field solution:
 - Numerically damps fast modes (light, plasma waves) when $\Delta t \gg \omega_{pe}^{-1}$, ω_{light}^{-1} ; $\Delta x \gg \lambda_{De}$, λ_{light} .
 - Field solver: Petsc-based matrix inversion.
 - Electromagnetic, but numerical implicit magnetization term not included in LSP.
 - *IF* numerically resolved, allows electromagnetic beam instabilities, full LPI (continuous transition from full-PIC to effectively hybrid model).
- Background plasma: multi-species Eulerian fluid:
 - Collisional transport (unmagnetized): Lee-More-Desjarlais, LSP coefficients recently corrected.
- Fast electron stopping and angular scattering formulas of Solodov-Betti / Davies; energy and momentum lost by fast e- to a background species deposited in each cell (conservative).
- R-Z cylindrical geometry.
- Fixed ionization states, ideal gas EOS.
- Future options:
 - Correct ionization, non-ideal EOS.
 - Fusion reactions, bremsstrahlung emission.
 - Coupling to Hydra rad-hydro code.

¹D. R. Welch, D. V. Rose, M. E. Cuneo, R. B. Campbell, T. A. Mehlhorn, Phys. Plasmas 13, 063105 (2006)
²A. B. Langdon, B. I. Cohen, A. Friedman, J. Comp. Phys. 51, 107 (1983);
D. W. Hewett, A. B. Langdon, J. Comp. Phys. 72, 121 (1987)