DEPLETE - a code for rapid assessment of backscatter activity

D. J. Strozzi, E. A. Williams, D. E. Hinkel Lawrence Livermore National Lab (LLNL), Livermore CA 94550

37th Anomalous Absorption Meeting 27 August 2007

Work supported by U.S. Department of Energy under Contract W-7405-Eng-48. UCRL-PRES-233924

D. J. Strozzi: Anomalous Absorption 2007: p. 1

DEPLETE calculates the laser and backscattered intensities, in steady state, along a 1-D ray profile. It solves for a set of scattered-wave frequencies, with physical noise and pump depletion. Kinetic formulas are used for coupling and Thomson.

- NEWLIP (E. A. Williams) linear kinetic gain calculation along 1-D ray profile; steady-state.
- DEPLETE Like NEWLIP, but solves for pump and scattered intensities with 1-D model of thermal fluctuations.
- SLIP (L. Divol, P. Michel) 3-D, steady-state, kinetic coefficients.
- pF3D (D. Berger, C. H. Still, et al.) laser propagation; enveloped laser and daughter waves; time evolution; 1-, 2-, or 3-D (patch, letterbox, whole beam, ...).
- Kinetics (particle-in-cell, Vlasov) full plasma physics (but small volumes).

NEWLIP: finds linear backscatter gains for rad-hydro simulations; quick-and-dirty estimate

• NEWLIP - Yorick code by E. A. Williams; finds gain $G(\omega_1)$ along many (~hundreds) of rays, to *quickly* assess target's backscatter risk.

$$\partial_s i_1(s,\omega_1) = -\alpha i_1 \qquad \alpha \equiv \frac{1}{4} \frac{f}{\eta_0} \frac{v_{os,0}^2}{c^2} \frac{k_2^2}{|k_{1p}|} \Im \frac{\chi_e(1+\chi_I)}{\epsilon}$$

Solved for many ω_1 's.

$$I_1 = \int d\omega_1 i_1$$

s = distance along ray path;

$$\chi_I = \sum_{i=\text{ions}} \chi_i \qquad \chi = \chi_e + \chi_I = \text{susceptibility}$$

$$\epsilon = 1 + \chi = \text{dielectric}$$

Plasma waves in the strongly-damped limit:

$$\frac{n_2}{n_e} = \frac{1}{2} \left| \frac{\chi_e}{\epsilon} \right| (k_2 \lambda_{De})^2 \frac{v_{os,0} v_{os,1}}{v_{Te}^2} \qquad n_{2e} = (1 + \chi_I) n_2$$

• Linear gain:

$$i_1(s_L) = i_1(s_0)e^G;$$
 $G \equiv \int_{s_0}^{s_L} ds \ \alpha(s)$ **G** = linear intensity gain

Linear gain G is the main "product" of NEWLIP.

DEPLETE equations: solve for pump and scattered intensities

 $\begin{array}{lll} \partial_s I_0(s) &=& -\kappa_0 I_0 & -\int d\omega_1 \frac{\omega_0}{\omega_1} I_0 \cdot (\tau_1 + \Gamma_1 i_1) \\ \partial_s i_1(s, \omega_1) &=& \kappa_1 i_1 - \Sigma_1 & -I_0 \cdot (\tau_1 + \Gamma_1 i_1) \\ & & \text{inv. brem. brem. noise} & & \text{Thomson coupling} \end{array}$

pump laser

scattered light

[all symbols positive]

Intensities are: [total power in ray] / [focal spot area].

- Bremsstrahlung:
 - $\begin{array}{ll} \text{inverse-brem.} \\ \text{damping:} \end{array} \quad \kappa_i \equiv \frac{\omega_{pe}^2}{\omega_i^2} \frac{\nu_{ei}}{v_{gi}} \end{array} \qquad \qquad \begin{array}{ll} \text{brem. noise;} \\ \text{B}_{\mathbf{v}} = \text{blackbody} \end{array} \\ \Sigma_1 = f^{-1} \Omega_c \kappa_1 \frac{v_{gi}^2}{c^2} B_v \end{aligned}$
- Thomson:

$$\tau_1 \equiv \frac{K_{\tau}}{|\epsilon|^2} \qquad K_{\tau} = \frac{\Omega_c}{\sqrt{2\pi}} n_e r_e^2 \frac{\omega_0}{\omega_{pe}} \frac{g_{\tau}}{k_2 \lambda_{De}} \qquad g_{\tau} \equiv |1 + \chi_I|^2 e^{-\zeta_e^2} + |\chi_e|^2 \sum_i \frac{v_{Ti}}{v_{Te}} e^{-\zeta_i^2}$$

Coupling:

$$\Gamma_1 = \frac{K_{\Gamma}}{|\epsilon|^2} \qquad K_{\Gamma} \equiv f \frac{2\pi r_e}{m_e c^2} \frac{1}{\omega_0} \frac{k_2^2}{k_{0p} |k_{1p}|} g_{\Gamma}$$

scattered light $\Omega_c \equiv 2\pi (1 - \cos \theta_c) \approx \frac{\pi}{4F^2}$ F-cone: $\cos \theta_c \equiv \left[1 + \frac{1}{4F^2}\right]^{-1/2} \approx 1 - \frac{1}{8F^2}$ $g_{\Gamma} \equiv |1 + \chi_I| \chi_{e,i} + |\chi_e|^2 \chi_{I,i}$

whole-beam $f \equiv \frac{\operatorname{area}(s)}{\operatorname{area}(s_{\operatorname{focus}})}$

DEPLETE numerics: shoot on I₀ (s=wall), split step

Shooting: Two-point boundary-value problem. March from wall to LEH, varying I₀ (wall) until I₀(LEH) is close enough to known value.

Run time dominated by evaluating Z functions, not ODE solving (even with shooting).

 $B_{1/2}$ = bremsstrahlung for a half-step:

$$\partial_s I_0 = -\kappa_0 I_0$$

$$\partial_s i_1 = \kappa_1 i_1 - \Sigma_1$$

 C_1 = coupling-Thomson for whole step: ∂_1

$$\partial_s I_0 = -\int d\omega_1 \frac{\omega_0}{\omega_1} I_0 \cdot (\tau_1 + \Gamma_1 i_1)$$

$$\partial_s i_1 = -I_0 \cdot (\tau_1 + \Gamma_1 i_1)$$

D. J. Strozzi: Anomalous Absorption 2007: p. 5

Coupling-Thomson step: Analytical solution for narrow resonances

Coupling-Thomson step over a single s cell: hold I_n constant, solve for i_1 for every ω_1 , then update I₀ conservatively (Manley-Rowe).

$$\partial_s i_1 = -I_0 \cdot (\tau_1 + \Gamma_1 i_1)$$

$$\Gamma_1 = \frac{K_{\Gamma}}{|\epsilon|^2} \qquad \tau_1 \equiv \frac{K_{\tau}}{|\epsilon|^2}$$

- Problem: narrow resonances in coupling and s (cm) Thomson coefficients hard for standard ODE solvers (e.g. Runge-Kutta).
- Solution: The resonance occurs when $Re[\epsilon] = 0$ in the denominator; ϵ itself varies slowly, so linearize ε in a cell and analytically solve.

$$\epsilon \approx \epsilon^{n-1/2} + \partial_s \epsilon^{n-1/2} \cdot (s - s_{n-1/2})$$

$$\partial_z i_1 = -\frac{B_\tau + B_\Gamma i_1}{1 + z^2} \longrightarrow i_1^{n-1} = (i_1^n + \beta) e^{B_\Gamma \Delta \omega} - \beta$$

$$\beta \equiv B_\tau / B_\Gamma$$

$$z \equiv \frac{s - \bar{s}}{L_s} \qquad \Delta w \equiv \operatorname{atan}(z_n) - \operatorname{atan}(z_{n-1})$$

E. A. Williams uses a similar technique for finding gains in NEWLIP ("ratint").

Properties of DEPLETE

- Fast! Almost as fast as NEWLIP. Most time spent evaluating kinetic Z functions.
- Works along 1-D ray profiles (rad-hydro usually treats lasers via rays).
- 1-D noise: 3-D bremsstrahlung noise taken over beam F-cone.
- Gives scattered-wave intensities:
 - Measurable, unlike gain.
 - Allows for assessment of nonlinearities (e.g. trapping, LDI, inflation).
 - Re-absorption of scattered waves done.
- Pump depletion included.
- Kinetic description same as NEWLIP, better than pF3D (some fluid approximations).
- Different scattered frequencies ω_1 handled simultaneous:
 - No enveloping around a carrier wave, as in pF3D.
 - Different ω_1 's treated incoherently (no spectral leakage; physical?).
- DEPLETE lacks some physics in pF3D:
 - Steady-state no time evolution.
 - 1-D: no transverse gradients, beam intensification.
 - no speckle physics, no beam smoothing (but we have ideas).
 - no plasma-wave advection (strong damping limit).
 - DEPLETE model not strictly valid for absolute instability.

Tests of DEPLETE on "clean" profile: linear gradients, just SRS

"Clean" profile test: scattered-light spectrum from pF3D and deplete have similar shape

Sample profile: inner beam (23 deg.) Be ray, 270 eV point design at time of peak laser power

DEPLETE and NEWLIP gain have similar reflected-light spectra

270V Be

D. J. Strozzi: Anomalous Absorption 2007: p. 12

DEPLETE and pF3D patch agree pretty well (on a log scale); speckle effects may enhance SRS

pF3D patch: "ray with speckles:" 3D, whole ray path, a few speckles in transverse directions.

pF3D has more SRS: probably due to higher gain in high-intensity speckles. pF3D has less SBS: probably due to more pump depletion.

The decent agreement of DEPLETE and pF3D scattered intensities validates DEPLETE's 1-D model of 3-D noise.

The plasma-wave amplitude predicted by DEPLETE can be compared with nonlinearity thresholds

Conclusions:

- DEPLETE provides a 1-D, steady-state, ray-based, linear kinetic calculation of backscatter:
 - Pump depletion, re-absorption, 1-D physical noise included.
- Compares well with NEWLIP gains.
- pF3D comparisons are promising; need to include speckle effects in DEPLETE for better agreement.

Future prospects:

- DEPLETE can be incorporated into rad-hydro codes:
 - ray-based (just like rad-hydro) and computationally fast (~secs. per ray).
 - An effective absorption coefficient, calculated from the DEPLETE solution (including scattered and plasma wave intensities) can replace the bremsstrahlung damping rate in the rad-hydro code.
- DEPLETE gives plasma wave intensities, which can be compared to nonlinearity thresholds (Langmuir decay instability, trapping, kinetic inflation, Langmuir wave self-focusing).
- Hot electron production can be estimated as well.
- DEPLETE can indicate regions where kinetic simulations may be especially illuminating.