Vlasov Simulations of Kinetically-Enhanced Raman Backscatter and Electron Acoustic Thomson Scattering

D. J. Strozzi¹, E. A. Williams¹, A. B. Langdon¹, A. Bers²

¹Lawrence Livermore National Laboratory (LLNL), Livermore, CA 94550, USA ²Massachusetts Institute of Technology, Cambridge, MA 02139, USA

UCRL-PRES-221948

Work at LLNL performed under the auspices of the U.S. Department of Energy by University of California, LLNL under Contract W-7405-Eng-48.

Outline

- Experimental motivation Trident single hot spots^{1,2}
 - Kinetic inflation³ of stimulated Raman backscatter (SRBS)
 - Stimulated (?) electron acoustic scattering (SEAS) off electron acoustic wave (EAW)
- ELVIS⁴ Vlasov-Maxwell simulations:
 - SRBS kinetic enhancement
 - Beam acoustic modes (BAMs)⁵ develop; SRBS off one of them
 - electron acoustic wave (EAW), electron acoustic scatter (EAS), from self-consistent SRBS physics
- EAWs excited by beam acoustic decay (BAD): BAM → BAM + EAW
 - may be two-pump: BAM's beat to make EAW
 - EAW curve weakly excited by harmonic generation
- Electron acoustic Thomson scattering (EATS)
 - EAS not exciting EAW, but is Thomson scattering off EAW fluctuations from BAD
- Linear modes (Hermite-Gauss projection) match simulation spectrum
 - Series of BAMs, some unstable (without parametric coupling)
 - Heavily-damped EAW; different from trapped EAWs of Rose⁶
- Bispectral analysis: BAD-EATS frequency matching found, phase coupling weak.
- BAM, BAD, EATS similar in hohlraum regimes (high temperature, high density).

¹D. S. Montgomery et al., *Phys. Plasmas* 9, 2311 (2002);
²J. L. Kline et al, *Phys. Rev. Lett.* 94, 175003 (2005);
³H. X. Vu et al., *Phys. Rev. Lett.* 86, 4306 (2001);
⁴D. J. Strozzi et al., *J. Plasma Phys.*, accepted (2006);
⁵L. Yin et al., *Phys. Rev. E* 73, 025401 (2006);
⁶H. A. Rose and D. A. Russell, *Phys. Plasmas* 8, 4784 (2001).

Motivation: single-hot-spot experiments (Trident) show enhanced SRBS and stimulated (?) electron acoustic scatter (SEAS)

ELVIS Vlasov simulations: SRBS bursty, kinetically enhanced above linear gain level

Reflected light: SRBS upshifts due to electron trapping; electron acoustic scatter (EAS) develops after kinetic enhancement

Electrostatic spectrum shows plasmon downshift, electron acoustic waves

Electron acoustic wave (EAW) strongest well below EAS matching frequency; different from Rose trapped EAW

*H. A. Rose and D. A. Russell, *Phys. Plasmas* 8, 4784 (2001). EAW phase velocity increases with amplitude.

Beam acoustic decay (BAD) - electron acoustic Thomson scatter (EATS)

*Displayed BAD involves an EAW with phase velocity 1.14 $v_{\rm Te}$

Distribution function shows vortices and persistent flattening, roughly tied to wave amplitude ($I_0 = 2 \cdot 10^{15} \text{ W/cm}^2$)

Hermite projection yields linear modes of arbitrary distribution

•Hermite projection:

$$f(v) = \sum_{n=0}^{N} f_n \phi_n(v) \qquad \qquad \phi_n(v) = \frac{1}{\pi^{1/4} \sqrt{2^n n!}} H_n(v) \exp(-v^2/2) \qquad \qquad f_n = \int_{-\infty}^{\infty} dv \, \phi_n(v) f(v)$$

$$\chi(v_p) = -k^{-2} \sum f_n \chi_{vn}(v_p) \qquad \chi_{vn}(v_p) = \frac{d}{dv_p} \int dv \frac{\phi_n(v)}{v - v_p} \qquad \qquad \omega_{pe} = \lambda_{De} = v_{Te} = 1$$
$$v_p = \omega/k$$

•Recurrence relation:

$$\chi_{vn} = -\left(\frac{2}{n}\right)^{1/2} \chi'_{v,n-1} + \left(\frac{n-1}{n}\right)^{1/2} \chi_{v,n-2}, \qquad n \ge 2$$
$$\chi_{v0} = \frac{\pi^{1/4}}{\sqrt{2}} Z'(v_p/\sqrt{2}) \qquad \chi_{v1} = -\frac{\pi^{1/4}}{\sqrt{2}} Z''(v_p/\sqrt{2})$$

•Upshot:

$$\chi_{vn}(v_p) = P_{Z,n+1}(v_p)Z\left(v_p/\sqrt{2}\right) + P_{R,n}(v_p)$$

 $P_{Z,n}$, $P_{R,n}$ = N^{th} order polynomials

Dispersion relation (no parametric coupling):

$$1 + \chi = 0$$

Roots vs. k agree with observed electrostatic spectrum ($I_0 = 2 \cdot 10^{15} \text{ W/cm}^2$)

Bispectral analysis measures frequency-matched, phase-locked signals

x, y, z = real; stationary; zero mean: cumulants = moments through 3rd order

- 2-point correlation (order 2 cumulant): $C_2(\tau) = \frac{1}{2T} \int_{-T}^{T} dt \, x(t) y(\tau + t)$
- Power spectrum (Wiener-Khinchin): $P_2(\omega) = \int_{-\infty}^{\infty} d\tau \ e^{-i\omega t} C_2(\tau) = \langle X^*(\omega) Y(\omega) \rangle$

• 3-point correlation function:
$$c_3(\tau_1, \tau_2) = \frac{1}{2T} \int_{-T}^T dt \, x(t) y(\tau_1 + t) z(\tau_2 + t)$$

• bispectrum: (complex; phase info): $P_3(\omega_1, \omega_2) = \int_{-\infty}^{\infty} d\tau \, e^{-i(\omega_1 \tau_1 + \omega_2 \tau_2)} C_3(\tau_1, \tau_2)$

$$P_3(\omega_1,\omega_2) = \langle X^*(\omega_1 + \omega_2)Y(\omega_1)Z(\omega_2) \rangle$$

• bicoherence: $0 \le |b_3| \le 1$ (normed bispectrum)

$$b_3(\omega_1, \omega_2) = \frac{P_3(\omega_1, \omega_2)}{\sqrt{\langle |X(\omega_1 + \omega_2)|^2 \rangle \langle |Y(\omega_1)Z(\omega_2)|^2 \rangle}} = \frac{\text{phase-coupled power}}{\text{total power}}$$

Bispectrum of E⁺($\omega_1 + \omega_2$) E⁻(ω_1) E_x (ω_2): SRBS, EATS (I₀ = 2•10¹⁵ W/cm²)

Conclusions and future work

Conclusions

- Electron trapping leads to kinetically enhanced SRBS, plasmon frequency downshift, bursty time evolution.
- Beam acoustic modes (BAMs), electron acoustic waves (EAWs) and electron acoustic scatter (EAS) observed, both in Trident single-hot-spot and hohlraum fill conditions.
- Hermite projection: linear modes of numerical distribution contain BAMs, some of which are linearly unstable, and heavily-damped EAWs.
- EAWs are energized by beam acoustic decay (BAD): BAM \rightarrow BAM + EAW.
- EAS is Thomson scatter of EAW fluctuations (EATS)

Future Work

- Rule of thumb for kinetic enhancement onset and reflectivity? Useful for designers.
- Experimental work: can EAWs, BAMs, EATS vs. SEAS mechanism be studied? EAS may be a miner's canary for (mild) kinetic enhancement.
- Ions: Not shown here; early work shows BAMs, EATS survives (see Strozzi Ph.D thesis, 2005).