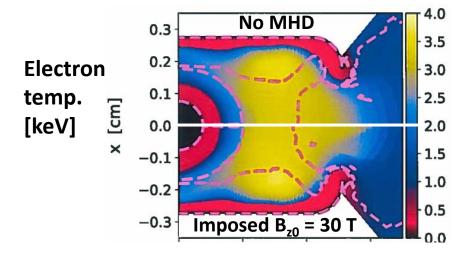
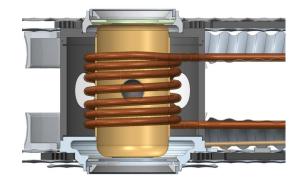
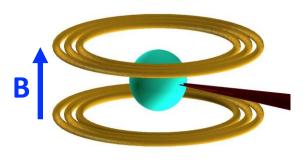
Magnetically Assisted Ignition on NIF

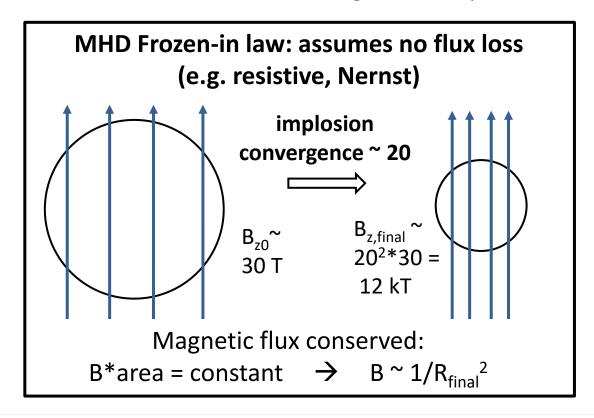

NIF User Group Meeting Livermore, CA 5 February 2020 **D. J. Strozzi,** J. D. Moody, H. Sio, B. B. Pollock, S. O. Kucheyev, D. D. Ho, S. Bhandarkar, J. M. Koning, J. D. Salmonson

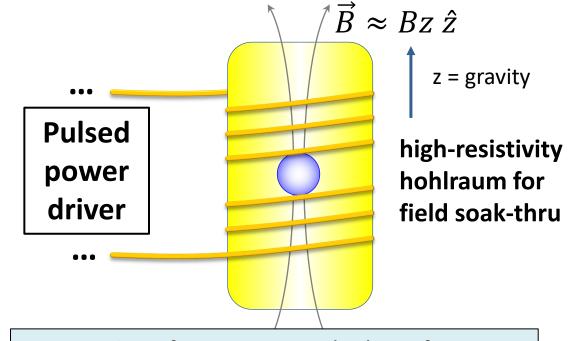




Outline: Magnetized Ignition on NIF LDRD

- Project overview and goals
 - Hohlraum + gas-filled capsule experiments: temperature + yield increase
 - Direct-drive "compression pusher" experiments: magnetic confinement of DD-produced 1 MeV tritons
 - Hong Sio, PI
- MHD modeling: magnetized hohlraums + "BigFoot" gas capsule
 - Little effect of imposed field
- High-resistivity hohlraum material for field soak-thru: Au+Ta alloys promising

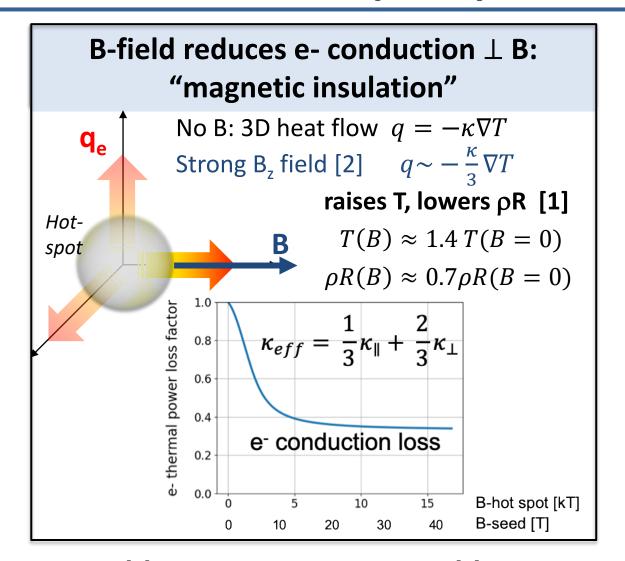


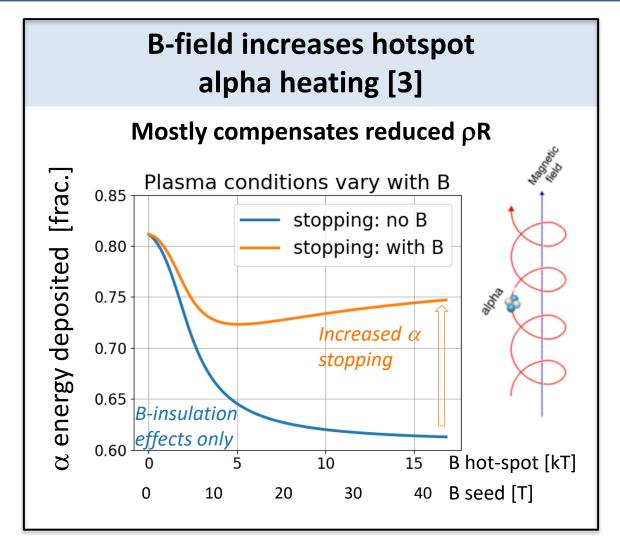


Magnetically-assisted ignition on NIF adds a B-field to a high-performing hohlraum implosion

- Start with high-performing cryo-layered hohlraum implosion
- ~30 T seed B-field to magnetize capsule

Expectations for current NIF high performers:


- Capsule:
 - ~ 2 keV T_{ion} increase: 5 → 7 keV
 - ≥ 2x yield increase
- Hohlraum: little change to x-ray drive, laser-plasma interaction



B-field can reduce electron thermal conduction and increase hot-spot alpha heating

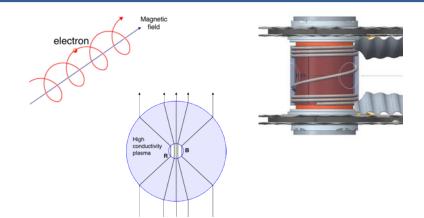


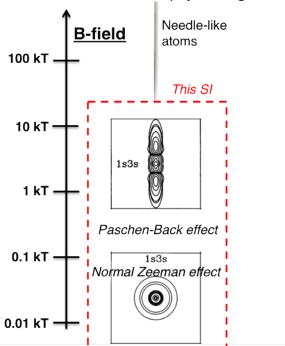
[1] O. A. Hurricane+, PPCF 2019; [2] D. Ho, APS 2016; [3] S. Yu. Gus'kov+, Sov. J. Quantum Electron. 1984

"Magnetically Insulated ICF (this project):" e- conduction reduced, magnetic pressure unimportant

Classic MFE: tokamak, stellara	ator,

System	T _e [keV]	Rho [g/cc]	B [T]
Tokamak (DT)	10	4.2e-10	10
Hohlraum fill (He)	3	1E-3	100
D2 Z pinch	4	3.3E-4	300
ICF hotspot (DT)	5	100	10,000


a conduction cumproscod:	κ_{\perp}	1	or	1
e- conduction suppressed:	$\frac{1}{\kappa_{ }}$	$\overline{(\omega_{ce}\tau_{ei})^2}$	01	$\overline{(\omega_{ce}\tau_{ei})^1}$



LDRD to demonstrate key elements for magnetized ignition on NIF

- Lab-funded LDRD "Strategy Initiative" (SI): John Moody PI
 - Started Oct. 2019
 - \$2M/year for 3 years
 - Experimentalists, target designers, target fab, cryo team, NIF engineers
- Magnetized room-temperature gas-filled capsule on NIF:
 - Hot-spot temperature increase with B-field
- Get B-field into hohlraum and capsule
 - High resistivity hohlraums
- Magnetized cryo layered targets
 - Cryo field generator: limited target positioner "real estate"
 - Ice layering method: thermal control, acceptable preheat
- Experimental platform for magnetized HED / high field science

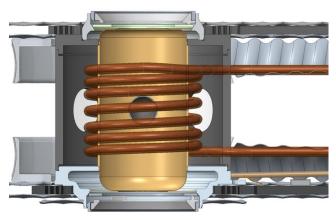
Enables new atomic physics regimes

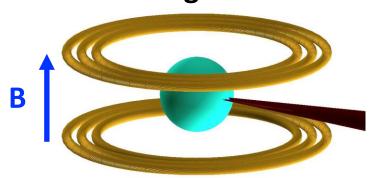
B-field can move current NIF hotspots into ideal self-heating regime; 2x yield realistic

Lasnex 2D MHD Simulations of N170601 [D. Ho]

- High design adiabat ~ 3.0
- Record yield at the time
- Degraded by preheat to match measured yield
- ~ 2x yield with imposed B-field
- Lower design adiabat ~ 2.0 could give ~> 5x yield [2]

[2] L. J. Perkins+, Phys. Plasmas 2017




We are planning room-temperature, "subscale" (E_{laser} ~ 1 MJ) hohlraum expt's, evaluating direct-drive

 $B_{z0} = 30 \text{ T}$

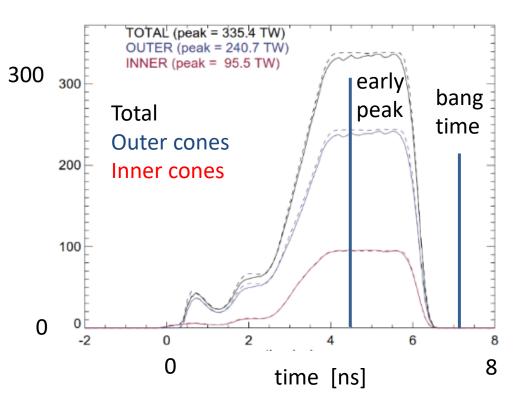
Magnetized hohlraum

Magnetized direct-drive : Hong Sio

Starting NIF Platform /shot	"BigFoot" symcap / N161204	"compression pusher" / N190227		
Laser pulse	3 shocks, adiabat ~ 4	Shock + compression yield		
Capsule	HDC, 844 um, D ₂ @ 3-5 mg/cc	CH, 2000 um, D ₉ + 3He ₁ @ 1.3 mg/cc		
Convergence ratio: R _{init} /R _{fin}	15-20	~8		
Main B-field effect	hotspot T _{ion} up 1.5 keV DD yield up 90%	Magnetically confine 1 MeV T's from DD rxn DD yield up 50%		

"BigFoot" NIF shot N161204: subscale gas-filled capsule

Why BigFoot?


- Don't re-invent wheel: use existing high-yield cryo platform
- Nice features: predictable, tunable, low LPI
- "Goldilocks convergence":
 - Enough to amplify B field, reduce hotspot e- conduction
 - Not so much for significant hydro instabilities or mix

N161204: BigFoot subscale gas-filled capsule

- Less taxing on laser and optics:
 - 1.1 MJ, 340 TW
- Capsule fill: D[30%] + He3[70%]
 - 6.5 mg/cc
 - Symcap: no DT ice layer
- Low backscatter
 - 1.2% of laser energy

1 C. Thomas, APS-DPP invited talk, 2016; K. Baker+, PRL 2018

Laser power [TW]

HYDRA MHD Model: Full Single-Fluid Braginskii Implemented

Bulk momentum

$$\rho (\partial_t + \vec{V} \cdot \nabla) \vec{V} = -\nabla p + \vec{J} \times \vec{B}$$

Magnetic force: pressure + tension

$$\vec{J} \times \vec{B} = (\hat{\mathbf{b}}\hat{\mathbf{b}} - 1) \cdot \nabla \left(\frac{B^2}{2\mu_0}\right) + \frac{B^2}{\mu_0}\hat{\mathbf{b}} \cdot \nabla \hat{\mathbf{b}}$$

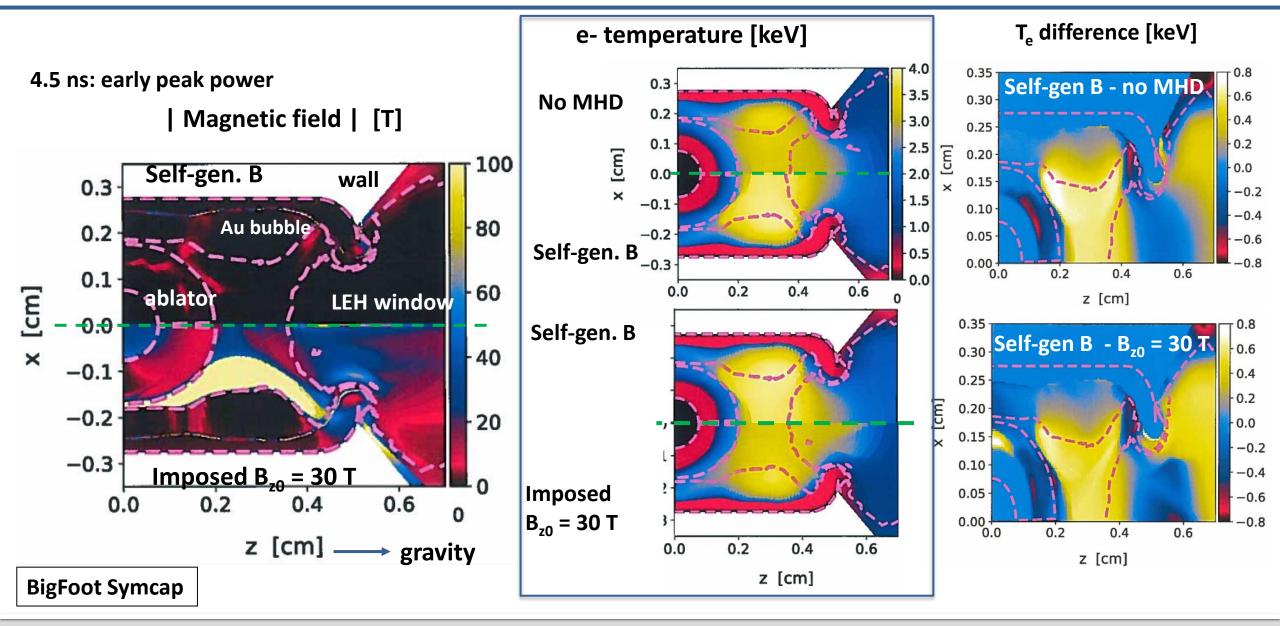
Maxwell

$$\vec{J} = -\nabla \times \vec{E}$$

$$\vec{J} = \mu_0^{-1} \nabla \times \vec{B} - \epsilon_0 \delta_t \vec{E}$$

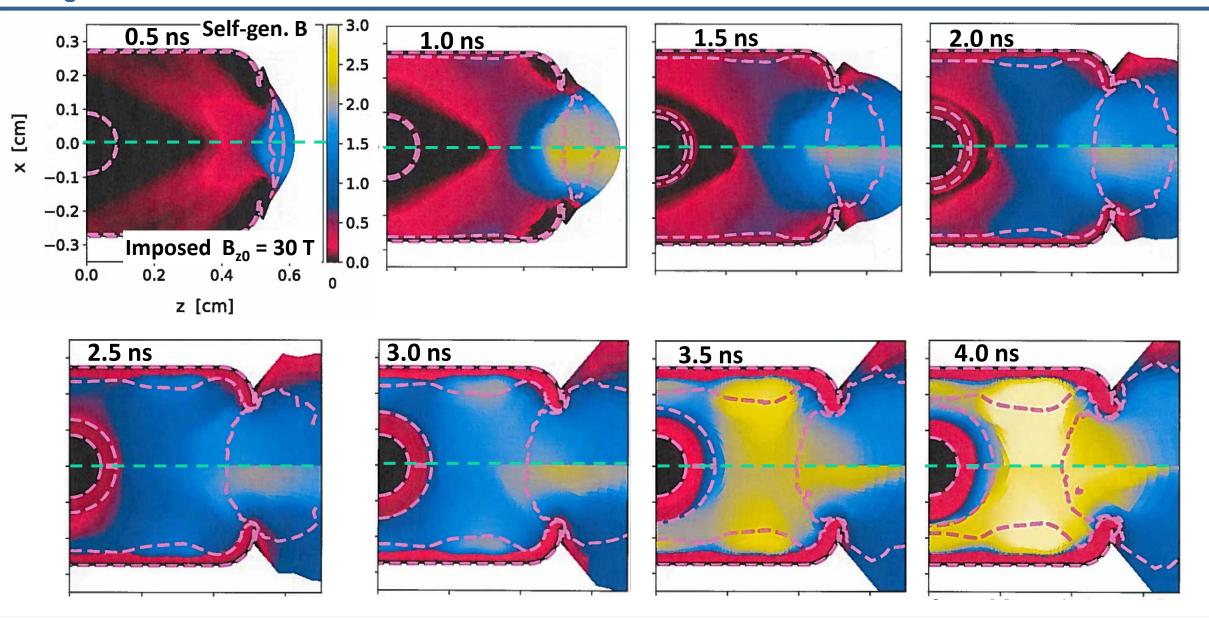
$$C_V(\partial_t + \vec{v}_e \cdot \nabla)T_e = \xi_{ei}(T_i - T_e) - \nabla \cdot \vec{q}_e + W_e - p_e \nabla \cdot \vec{v}_e + \cdots$$

$$\vec{q}_e = -e^{-1}T_e \overleftrightarrow{\beta} \cdot \vec{I} - \overleftrightarrow{\kappa} \cdot \nabla T_e$$
 heat flux

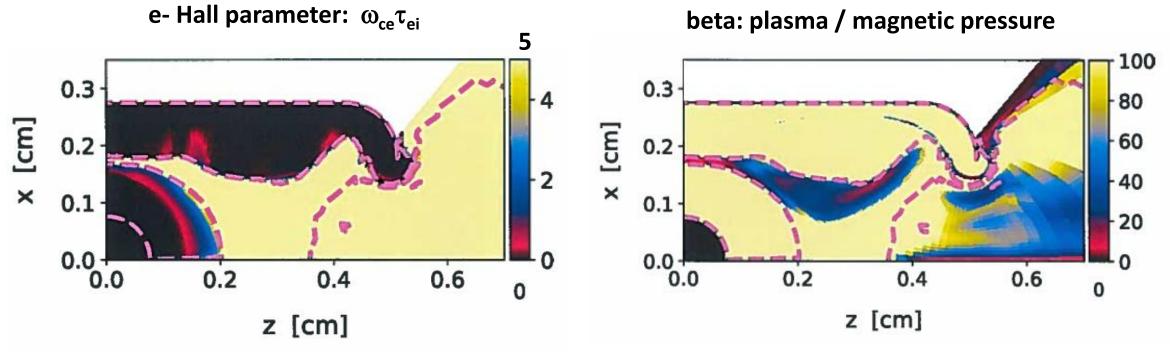

$$W_e = \vec{J} \cdot \vec{\eta} \cdot \vec{J} - e^{-1} \vec{J} \cdot \vec{\beta} \cdot \nabla T_e$$
 frictional heating

Simplifications in this work:

due to numerical issues

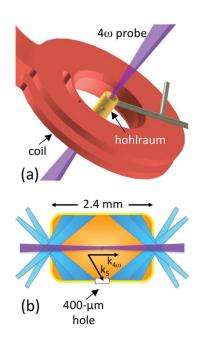

- No Seebeck physics: $\beta_{||} = \beta_{\perp} = 0$
- Scalar resistivity η
- No Hall term in Ohm's law
- No Righi-Leduc heat flow: $\kappa_{\wedge} = 0$

Hohlraum dynamics: frozen-in B field, small temperature change



T_e [keV] Movie: hotter in LEH w/ imposed B, not in rest of fill

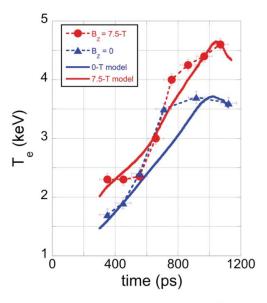
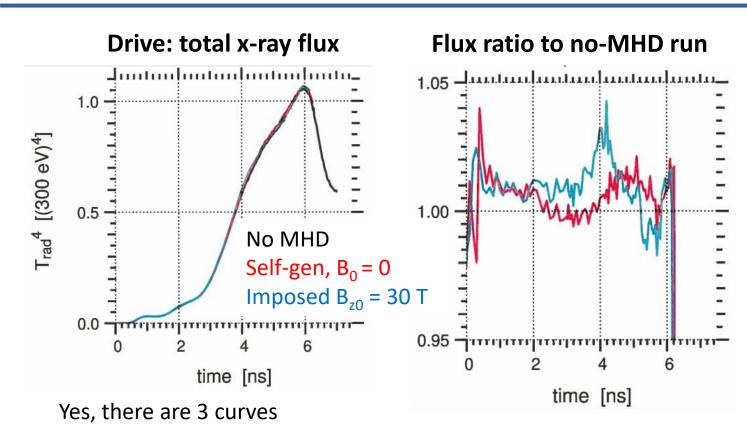
Hohlraum dynamics with imposed $B_{z0} = 30 \text{ T}$: e- Hall parameter large in fill, magnetic pressure unimportant

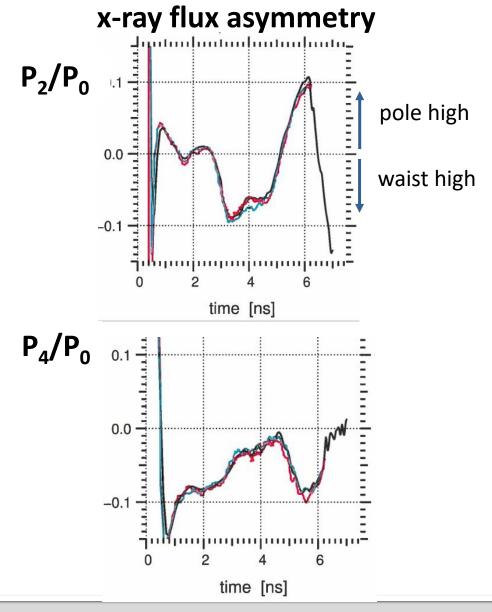

4.5 ns: early peak power BigFoot Symcap

Prior work on MHD in hohlraums

- D. Strozzi+, JPP 2015 imposed B, in high-gas-fill hohlraum
- W. Farmer+, PoP 2017 self-generated B

Higher T_e seen in magnetized hohlraum experiments on Omega: Montgomery et al., 2015

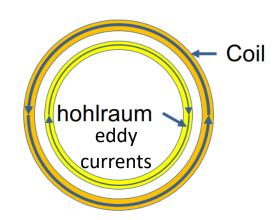




FIG. 3. Measured electron temperature versus time for B=0 (blue triangles) and B=7.5-T (red circles). Over-plotted as solid lines are the 2-D HYDRA model for B=0 (blue) and B=7.5-T (red).

Comparison with Montgomery+ PoP 2015

- Omega+MIFEDS hohlraum expt's
 - $B_{z0} = 7.5 \text{ T, gas-filled, no capsule}$
- NIF hohlraums: much different scale:
 - Larger, 50x laser energy, 6-7x longer pulse
 - More time to reach quasi-equilibrium

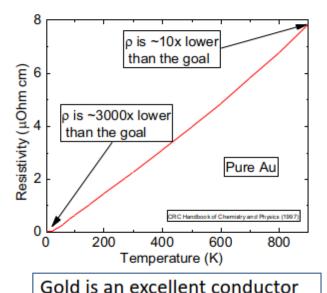
X-ray flux on capsule: small effect of B fields on drive



Hohlraum material must meet field soak-thru and x-ray drive constraints

soak-thru:	
want	
high	
resistivity ρ	
Want high Z	

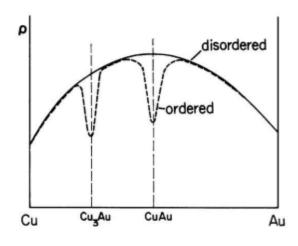
Constraint	Requirement	Notes
$\vec{J} \times \vec{B}$ wall motion	< 50 μm	Beam pointing, symmetry, backscatter
Wall Joule heating	< 2000 K gas capsule < 700 K (est.) DT layer	Limit $\Delta T_{ablator}$ Limit ΔT_{ice}
Field soak-thru time	~0.1's μs	Not issue for our \sim 2 μs current pulses
X-ray flux	>= 95% of pure Au	Retain yield increase


Target fab hohlraum team:

- S. O. Kucheyev, A. Engwall, L.B. Bayu Aji, J. Bae,
- S. Shin, A. Baker, and S. McCall.

Resistivity 101: defects needed for high enough value at cryo conditions; alloys can provide

Matthiessen rule:


$$\rho(T) = \rho_{defect} + \rho_{phonon}(T)$$

in the entire temperature range

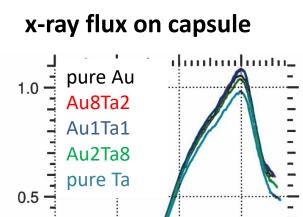
Nordheim rule:

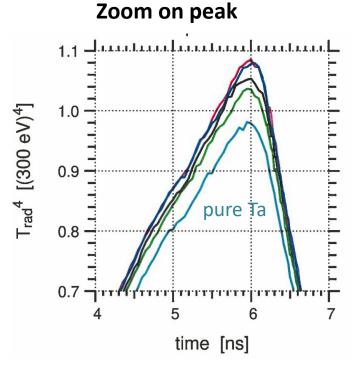
$$\rho_{defect} = x(1-x)$$


Resistivity depends on microstructure and defects

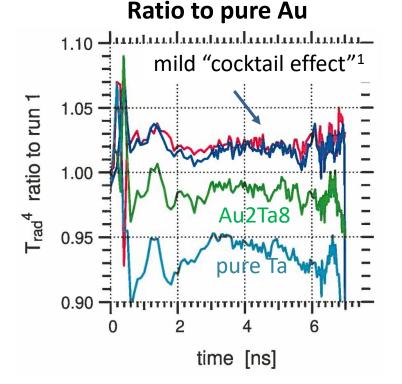
Norbury-Linde rule: $\rho_{defect} = A + B(\Delta Z)^2$

Ta: $\Delta Z = -6$ from Au


		00.000																
00.400	01.02	00.000	U1.227		00.00	(00)	101.01	102.01	100.72			114.71	117.02	110.71	121.70	127.00	120.00	101.20
55	56		72	73	74	75	76	77	78	79		80	81	82	83	84	85	86
00	00		1	10	1	120	1.0	1. '	10,	1.0		00	<u> </u>	<u></u>	00	<u>v</u> .	00	00
	D_		LUF /	To	1 1/1/		\cap	l r	D#	Λ	_	LL~	TI	Dh	Di		Λ +	Dn
US	Da	57_71		Ia	W	Re	US	III	TL [Au		пg	11	LN	DI	FU	Αι	KII
Caesium	Barium	01 11	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold		Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
132.91	137.33		178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97		200.59	204.38	207.2	208.98	(209)	(210)	(222)
0.7	0.0		404		400	407	400	400	440			440	440	444	AAF	440	447	440


Au_xTa_{1-x} alloys may be resistive enough for cryo layered shots; $Au_xTa_vO_z$ far exceed minimum

Au+Ta alloys: more resistive than Au, small effect on x-ray drive


T_{rad}⁴ [(300 eV)⁴]

• Au_xTa_vO₇ may be OK

15-20% lower than pure Au

time [ns]

Imposed B field moves DT implosions closer to ignition

Hotspot of best NIF DT performer (BigFoot shot N180128):

Hotspot quantity	No B value	Strong B value	Comment
T _{ion} [keV]	4.9	7.1	First > 5 keV hotspot
ρ [g/cm ³]	74	52	
R [um]	31	Same	
ρR [g/cm²]	0.23	0.16	
CR	22	Same	DT convergence ratio: initial / final DT-ablator interface
lpha energy dep. in HS	0.82	0.85	B effect on α 's over-compensates ρR reduction

B_{z0} = 40 T and strong-B values:

B_z final = B_{z0} CR^2	19 kT	MHD frozen-in law
beta = matter pressure / magnetic pressure	190	
e- Hall parameter: $\omega_{ce} au_{ei}$	11.5	e-'s magnetized, ⊥ heat flux strongly reduced
$lpha$ Hall parameter: $\omega_{clpha} au_{lpha e}$	4.1	

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.