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Coherent acceleration of magnetized ions by electrostatic waves
with arbitrary wavenumbers

D. J. Strozzi,a) A. K. Ram, and A. Bers
Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

~Received 27 February 2003; accepted 27 March 2003!

This paper studies the coherent acceleration of ions interacting with two electrostatic waves in a
uniform magnetic fieldB0 . It generalizes an earlier analysis of waves propagating perpendicularly
to B0 to include the effect of wavenumbers alongB0 . The Lie transformation technique is used to
develop a perturbation theory describing the ion motion, and results are compared with numerical
solutions of the complete equations of motion. Coherent energization occurs when the
Doppler-shifted wave frequencies differ by nearly an integer multiple of the ion cyclotron
frequency. When the difference in the parallel wavenumbers of the two waves is increased the
coherent energization of ions is limited to a small part of the phase space. The energization of ions
and its dependence on wave parameters is discussed. ©2003 American Institute of Physics.
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I. INTRODUCTION

The motion of charged particles in the presence of e
tromagnetic waves is a rich dynamical system that has b
studied for a variety of cases. Important physical applicati
of this problem occur in laboratory and space plasmas, s
as for high-temperature~collisionless! plasma heating and
current drive and the transverse energization of ions
times short compared to collisional times. A particular a
of interest is the nonlinear heating of ions~as opposed to
linear mechanisms such as Landau and cyclotron damp!
by electrostatic waves propagating through a plasma i
uniform magnetic fieldB0 .

For a single electrostatic wave propagating acrossB0 ,
the stochastic heating of ions by waves with frequencyv
@vci but vÞNvci ~where N is an integer andvci

[qB0 /M is the ion cyclotron frequency! was studied by
Karney and Bers.1,2 It was found that ions with speeds acro
B0 less than the phase velocity of the wavev/k' ~that is,
k'r i*v/vci) exhibit regular motion and do not gain energ
However, for wave amplitudes above a threshold amplitu
the ions are stochastically heated if their speeds are insi
region with a lower bound nearv/k' . The stochastic
‘‘webs’’ generated by a single perpendicularly propagat
wave with frequencyv5Nvci also lead to stochastic io
heating.3–5

For a single wave propagating obliquely toB0 it was
found that ions could also be stochastically heated.6,7 It has
recently been shown that single and multiple drift-Alfve´n
waves withv,vci can induce stochastic ion heating,8 which
may account for certain experimental observations.9 For two
waves propagating obliquely toB0 , the threshold wave am
plitudes needed for stochastic motion can be significa
lowered.10 There is still a lower bound for the stochast
region of phase space.

For two perpendicular waves that satisfy the resona
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condition v12v25Nvci Ram et al. discovered
numerically11 that coherent~as opposed to chaotic! energiza-
tion can bring ions from low energies into the stochas
domain. Be´nisti et al.12 then showed that this coherent ene
gization was described by perturbation analysis using
transformation methods. The coherent energization was
shown by Ramet al.13 to be described by a multiple tim
scale analysis, and invoked to explain the energization
hydrogen and oxygen ions from Earth’s upper auroral io
sphere into the magnetosphere. For two non-collinear,
pendicularly propagating waves, the coherent energiza
was found to persist as long as the angle between them
less than 30°.14

Coherent acceleration by electrostatic waves withv1

2v25Nvci can only occur when both wave frequencies a
larger thanvci . This process is most interesting for cas
where ions with energy well below the stochastic regi
(k'r i!v/vci) are accelerated into it. Most of the work o
coherent acceleration has focused on waves with frequen
much higher thanvci . In magnetic fusion experiments an
in the Earth’s ionosphere, lower-hybrid waves fit this d
scription (v lh;vpi@vci , v lh5 lower-hybrid frequency,
vpi5 ion plasma frequency!.

In this paper we study the interaction of ions with ele
trostatic waves ranging in frequency from lower-hybrid fr
quencies down to a few multiples ofvci . The analysis of
Bénisti et al.12 is generalized to include nonzero wavenum
bers alongB0 . We develop a perturbation theory using th
Lie transformation method and find conditions for which c
herent acceleration persists. We also discuss the depend
of the range of energization and period of coherent osci
tions on wave parameters.

The Hamiltonian formulation of the problem is given
Sec. II. An analytic perturbation theory for the coherent m
tion based on the Lie transformation technique is descri
in Sec. III. Section IV compares the results for the pertur
tion theory with numerical results obtained from the co
2 © 2003 American Institute of Physics
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plete dynamical equations. The scalings of coherent ene
zation and the period of oscillation, for perpendicula
propagating waves, are obtained. Section V discusses
case of obliquely propagating waves and compares the
sults with those for two perpendicularly propagating wav

II. EQUATIONS OF MOTION

The nonrelativistic equation of motion of an ion in th
presence of a uniform magnetic fieldB05B0ẑ in a plasma
and interacting with two electrostatic waves is

M
d2x

dt2
5q(

i 51

2

F ik i sin~k i "x2v i t1a i !1qvÃB0 , ~1!

where F i is the electrostatic potential amplitude,k i is the
wavevector,v i is the wave frequency, anda i is the phase of
the ith wave. We normalize times to the inverse of the i
cyclotron frequencyvci , distances to the inverse ofk1x , and
masses to the ion massM. We restrict our attention to the
case where bothk i ’s lie in the x–z plane. Letn i[v i /vci

and e i[(vBi /vci)
2, where vBi[(qk1x

2 F i /M )1/2 is the
bounce frequency in theith wave. The Hamiltonian for this
system is

h~x,p,t !5
1

2
~p2A!21(

i
e i cos~k i "x2n i t1a i !, ~2!

where A5B0xŷ is the vector potential, andp5mv1qA
→v1xŷ is the ~nondimensional! canonical momentum.

Sinceh is independent ofy, we can eliminate they de-
gree of freedom by making a Galilean transformation to
frame moving in theŷ direction with speedpy05vy01x0

~the subscript 0 refers to a quantity’s initial value!. Following
Ref. 15, the generating function for the canonical transf
mation from (y,py) to (y8,py8) is F25(y2py0t)(py81py0).
Then y85y2py0t and py85py2py0 , so that py08 50. The
transformed Hamiltonian~to within a constant! is

h~x,z,px ,py8 ,pz ,t !5 1
2 @px

21py8
21~x2py0!21pz

2#

1(
i

e i cos~k i "x2n i t1a i !. ~3!

Since]h8/]y850, py8 is independent of time so thatpy850.
This eliminates they8 degree of freedom from the dynamic
Replacingx by x85x2py0 andpz by vz gives

h8~x8,z,px ,vz ,t !5 1
2 ~px

21x821vz
2!

1(
i

e i cos~kixx81kizz2n i t1a i !, ~4!

wherea i1kixpy0 is replaced bya i .
In a frame moving with velocityuẑ the Hamiltonian

remains unchanged except that the wave frequencies
Doppler shifted:n i→n i2kizu. Without loss of generality we
assume thatvz050 and consider the effects ofvz0 on ob-
lique propagation in Sec. V.
Downloaded 25 Jun 2003 to 18.62.13.5. Redistribution subject to AIP
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We transform (x8,px) to action-angle coordinates (f,I )
using the generating functionF15 1

2x82 cotf. Then I
5 1

2(vx
21x82)5 1

2(vx
21vy

2) is the perpendicular kinetic en
ergy, andf5arctan(x8/vx)5arctan(2vy /vx) is the gyrophase.
The transformed Hamiltonian is

H~f,z,I ,vz ,t !

5I 1
1

2
vz

21(
i

e i cos~kixr sinf1kizz2n i t1a i !, ~5!

wherer5A2I is the ion gyroradius.

III. PERTURBATION ANALYSIS OF COHERENT
MOTION

In general, the equations of motion obtained from~5!
cannot be solved analytically. Consequently, we resort to
merical solutions to provide an insight into the dynamics
ions in two electrostatic waves. Figure 1 shows the ti
evolution ofr for three ions having the same initialr0 , but
different f0 , interacting with two waves of frequenciesn1

540.37 andn2539.37, and amplitudese15e254. ~All the
numerical solutions of ordinary differential equations ha
been carried out using the Bulirsch–Stoer algorithm
scribed in Ref. 16.! There are two distinct kinds of motion
the slow, smooth, ‘‘coherent’’ oscillations at lowerr, and the
irregular, ‘‘stochastic’’ motion at higherr. Superimposed on
the coherent motion are small-amplitude, high-frequen
fluctuations. Figure 2 shows the orbits for the same para
eters as Fig. 1 except thatn2539.369 and the initial condi-
tions are different. This demonstrates that the coherent ac
eration from low to high energies occurs only whenn12n2

is an integer.
Our interest is to provide an analytical description of t

coherent dynamics without going into details of the stoch

FIG. 1. r vs t for three ions interacting with two perpendicular waves fro
the full HamiltonianH ~5!. Quantities in all figures are given in terms of th
normalized units defined in the text. The initialr0515.95 (j05r0 /n1

50.4) for all three ions while their phases aref05(20.3,0.2,0.4)p for ions
labeled 1, 2, and 3, respectively. The parameters for the two waves are1

5e254, k1x5k2x51, k1z5k2z50, n1540.37, andn25n121.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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tic region, other than to note its existence forr'min(ni).
1,2

We assume that the waves are perturbing the cyclotron
tion of the ions and express

H5H01H1 , ~6!

where

H05I 1 1
2vz

2,
~7!

H15(
i

e i cos~kixr sin f1kizz2n i t1a i !.

An approximate analytical description of the ion motion
the coherent regime is obtained by using the Lie perturba
technique17,18 with the ordering parametere (e;e1;e2).
We assume thatn i¹Z but (n12n2)5NPZ. For n iPZ a
web structure is formed in phase space and has been
cussed elsewhere for a single wave4 and for two waves
propagating acrossB0 .19 For the case of a single wave th
stochastic web structure also has a lower bound.20

From the Lie perturbation analysis~Appendix A! the
Hamiltonian that describes the coherent ion motion toO(e2)
is

H̄~f̄,z̄, Ī ,v̄z ,t !5 Ī 1 1
2v̄z

21H̄2 , ~8!

where

H̄25S0~ Ī ,v̄z!1S2~ Ī ,v̄z!cos~N~f̄2t !1Dkzz̄1a12a2!,
~9!

S05S0x1S0z , ~10!

S0x52
1

2r̄
(

i
kixe i

2 m

m2m i

Jm,iJm,i8 , ~11!

S0z5
1

4 (
i

kiz
2 e i

2
Jm,i

2

~m2m i !
2

, ~12!

S25S2x1S2z , ~13!

FIG. 2. r vs t for the same parameters as in Fig. 1 except thatr0515.95, 30,
45 andn25n121.001.
Downloaded 25 Jun 2003 to 18.62.13.5. Redistribution subject to AIP
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S2x52
e1e2

4r̄~m2m1!
~k1x~m2N!Jm,18 Jm2N,2

1k2xmJm,1Jm2N,28 !2
e1e2

4r̄~m2m2!
~k1xmJm,2Jm1N,28

1k2x~m1N!Jm,28 Jm1N,1!, ~14!

S2z5
1

4
k1zk2ze1e2S Jm,1Jm2N,2

~m2m1!2
1

Jm,2Jm1N,1

~m2m2!2 D , ~15!

Dkz5(k1z2k2z),m i5n i2kizv̄z , andm is summed from2`
to 1`. Jm,i[Jm(kixr̄) is the Bessel function of the first kind
and f 8(j)5d f /dj. The barred coordinates are related to t
original coordinates by a near-identity transformatio
(f̄,z̄, Ī ,vz5(f,z,I ,vz)1O(e) ~Appendix A!. For instance,
the relation betweenI and Ī is

I' Ī 2e i(
m

mJm,i

m2m i

cos~mf̄1kizz̄2n i t1a i !. ~16!

The HamiltonianH̄ is a generalization to oblique waves o
the results obtained in Ref. 12 for collinear perpendicula
propagating waves. In the limitkiz→0 the above reduces t
the description in Ref. 12. A nonzeroa12a2 is equivalent to
a shift in the initialf̄0 so that, without loss of generality, w
can seta15a250.

Our perturbation analysis assumes there are no r
nances atO(e). Such resonances occur ifn i is an integer,
where our present analysis breaks down.

The explicit time dependence inH̄ can be eliminated by
transforming fromf̄ to c̄5f̄2t using the generating func
tion F25 Ĩ (f̄2t). The transformed Hamiltonian is

H̃~ c̄,z̄, Ī ,v̄z!5 1
2v̄z

21S0~ Ī ,v̄z!1S2~ Ī ,v̄z!cos~Nc̄1Dkzz̄!,
~17!

where Ī 5 Ĩ has replacedĨ ( Ī and c̄ are canonically conju-
gate!. Since H̃ does not depend explicitly on time it is
constant of the motion.

Using Hamilton’s equations forĪ̇ and v̇̄z , we find a sec-
ond constant of the motion:

d

dt S v̄z2
Dkz

N
Ī D 50. ~18!

Thus, the system is integrable and the dynamics describe
H̃ are not stochastic. Along an orbit,v̄z is a function ofĪ and
initial conditions only:

v̄z5vz01
Dkz

N
~ Ī 2I 0!. ~19!

Therefore,S0 and S2 are functions just ofĪ . Since ucosxu
<1

H2<H̃<H1 , H6~ Ī !5 1
2v̄z

21S0~ Ī !6uS2~ Ī !u. ~20!
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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For an initial condition with a given value ofH̃, r̄ varies
between the two points whereH̃ equalsH1( r̄) or H2( r̄).
We refer toH6 as the potential barriers, since they delim
the allowed and forbidden regions of phase space.

Figure 3 shows the orbits generated by the second-o
Hamiltonian~17! for the same parameters as in Fig. 1. O
perturbation analysis accurately captures the coherent mo
of the full system except near the stochastic regionr
'min(ni) where our perturbation theory breaks down. Belo
this region,r and r̄ differ by small fluctuations that are ac
counted for, toO(e), by the transformation~16!.

IV. COHERENT MOTION FOR PERPENDICULAR
WAVES

Using the Hamiltonian~17! we now analyze the ion mo
tion for two perpendicularly propagating waves. Figures
and 3 show the complete and coherent motion, respectiv
for two perpendicularly propagating waves (kiz50). Figure
4 displaysH1 andH2 from ~20! for the same parameters a
in Figs. 1 and 3, and the values ofH̃ for the three initial

FIG. 3. r̄ vs t from the coherent HamiltonianH̃ ~17! for the same param-
eters as in Fig. 1. SR indicates the stochastic region for the full Hamilton

FIG. 4. H1 andH2 vs r̄ for the same parameters as in Fig. 1. The init

values ofH̃ for the three ions in Fig. 1 are marked by the open circles.
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conditions. The coherent analysis correctly predicts that p
ticle 3 in Fig. 1 will not make it into the chaotic regim
because it is reflected by the bump inH2 .

If we multiply e1 ande2 by the same factora thenH̃ in
~17! is multiplied bya2 ~note that for perpendicularly propa
gating waves,12v̄z

2 is a constant and can be eliminated fro
H̃). Since a rescaling of the Hamiltonian is equivalent to
rescaling of time, rescaling bothe i ’s does not affect the
range of motion inr̄ but rescales the period by 1/a2. For
e1;e2 , this means the period scales like 1/e1

2. This reflects
the fact that the coherent motion is second order in the w
field amplitudes. It also shows that in certain physical situ
tions, at sufficiently large amplitudes, the effects of collisio
on the coherent energization can be made negligible.

The range of coherent motion inr scales linearly with
the wave frequencies. In Fig. 5 we plotH6 /H1(j50) vs
j[r̄/n1 for two values ofn1 with N51. Note that the po-
tential barriers do not change significantly withn1 . Figure 6
shows that, as a function ofn1 , the averagejmin and jmax

have a small variation (jmin andjmax are the maximum and

n.
FIG. 5. H6 /H1(j50) vsj[r̄/n1 for N51 andn1510.37~solid line! and
n1570.37~dashed line!. e15e25arbitrary,k1x5k2x51, andk1z5k2z50.

FIG. 6. Averagejmin andjmax vs n1 for perpendicularly propagating wave
based on the barriersH6 . Parameters are as in Fig. 5 except thatn1

5(3.37,4.37, . . . ,80.37!, j050.4, and the average is overf0

5(0,0.05, . . . ,1)p.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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minimum j attained by an ion undergoing coherent moti
and occur when the ion reaches the barriersH6). The aver-
age is over ions with the same initialj050.4 and different
f05(0,0.05, . . . ,1)p. Waves with higher frequencies ca
therefore produce coherent energization to higher energ
Since the lower bound of the stochastic region isr
'min(ni)→j'1, ions with the same initialj0 andf0 either
will or will not reach the stochastic region regardless of t
wave frequencies. Forn1 near an integerjmax is about 20%
higher than whenn1 is near a half-integer~this is not shown
explicitly in Fig. 6!.

The period of oscillation inĪ ~see Fig. 3! can be esti-

mated from the equation of motion forĪ̇ :

Ī̇ 52
]H̃

]c̄
5NS2sin~Nc̄ !. ~21!

An orbit’s turning point typically occurs whenc̄5np/N,
i.e., when it hits one of the barriersH6 . Therefore, ap-
proximately, the period of oscillationt is given by t

'2p/(N^ċ̄&), where^ & denotes the average over one p
riod. From the asymptotic forms ofS0 and S2 for n1;n2

@1 ~Appendix B! we find that

H̃'n1
22ha~j,c̄ !, ~22!

whereha depends onn i only throughj. Then

ċ̄5
]H̃

] Ī
'n1

22 ]ha

] Ī
5n1

24 1

j

]ha

]j
. ~23!

Thus, t;n1
4. Waves of lower frequency accelerate io

much more rapidly than those with higher frequency a
thus may also be made less sensitive to the effects of c
sions. Figure 7 compares this scaling with the periods of
actual orbits obtained fromH̃.

FIG. 7. The period of coherent oscillationt vs n1 . The other wave param
eters are the same as in Fig. 1. The initial conditions arej050.4 andf0

5(0.2,0.6)p. The open circles and stars are the periods obtained from

tegrations of the dynamics given byH̃. The solid lines are proportional ton1
4

with the constant of proportionality chosen to match the period atn1

540.37. The vertical axis is scaled so thatn1
4 is a straight line.
Downloaded 25 Jun 2003 to 18.62.13.5. Redistribution subject to AIP
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V. COHERENT MOTION FOR OBLIQUE WAVES

In this section we describe the motion of ions when t
waves have nonzero parallel wavenumberkiz . This couples
the parallel dynamics to the perpendicular motion.

For ions with initialvz050 interacting with asingleob-
lique wave, the motion is stochastic when6

AuJn0
~r!u1AuJn011~r!u>

1

2kzAe
, ~24!

wheren0 is the greatest integer less thann. For n0@1, the
lower bound of the stochastic region is

r'n01
0.15

ekz
2

n0
2/321.1n0

1/3. ~25!

As for a single perpendicular wave, the lower bound inr is
roughly the wave frequency and decreases withe. The sto-
chastic region invz extends fromvz'0 to vz'2n.

For two waves Eq.~19! shows thatv̄z changes only
when DkzÞ0. Thus, the casesDkz50 andDkzÞ0 lead to
different dynamics and are treated separately.

FIG. 8. r vs t for the same parameters as in Fig. 1 except t
k1z5k2z51.

FIG. 9. vz vs t for the same parameters as in Fig. 8.

-
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A. Equal parallel wavenumbers: Dk zÄ0

Figures 8 and 9 show the time evolution ofr andvz for
two waves propagating at an angle of 45° (kiz5kix51) to
B0 . As in the case of two perpendicularly propagati
waves, there is coherent change inr. During this coherent
evolutionvz has small-amplitude fluctuations around its in
tial value. In the region where the motion inr becomes
stochastic so does the motion invz . The stochastic region in
vz agrees with the above-given estimate. Sincev̄z is a con-
stant during the coherent motion, the fluctuations invz are
due to the transformation betweenv̄z andvz .

The main effect of equal parallel wavenumbers is
slightly decrease the range of coherent motion from wha
is for perpendicularly propagating waves, thus inhibiti
some ions from reaching the stochastic region. Numer
studies indicate thatuS0x /S0zu and uS2x /S2zu are both unity
for j,1 but approach 0 asj→1. This raises the bump inH2

askiz is increased. Consequently, more ions are reflected
H2 and the range of coherent motion inr is slightly lowered.
This is evident from Fig. 10, which showsH6 /H1( r̄50)
for k1z50.1 and 1. Figure 11 shows the range of moti

FIG. 10. H6 /H1( r̄50) vs r̄ for k1z5k2z50.1 ~dots! and 1~dashes!. Other
parameters are as in Fig. 8. The curves fork1z50 are very close to those
for k1z50.1.

FIG. 11. Averagejmin andjmax vs k1z for k2z5k1z from H6 . n1540.37 and
the other parameters are as in Fig. 6.
Downloaded 25 Jun 2003 to 18.62.13.5. Redistribution subject to AIP
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jmin ,jmax for different k1z . Increasingkiz slightly lowers
jmax since the enhanced bump inH2 reflects more ions.
Generally then, significant coherent energization and acc
to the stochastic region is obtainable with oblique wav
provided thatDkz50, while the normalizedkz may be large.

B. Unequal parallel wavenumbers: Dk zÅ0

When the parallel wavenumbers of the two waves
different, the coherent motion of the ions changes drastica
In this casevz undergoes coherent motion and the term1

2v̄z
2

in H̃ ~17! is no longer a constant. This limits the range inr as
Dkz is increased. Figures 12 and 13 show the time evolut
of r and vz for the exact orbits obtained from~5! with k1z

50.001 andk2z50. These figures illustrate the limits inr.
Figure 14 shows the variation ofH6 and 1

2v̄z
2 as func-

tions of r̄. For r̄ far from r̄0517,H12H252uS2u! 1
2v̄z

2 so
that H1'H2 . Figure 15 shows the limitation on the rang
of coherent motion inj for DkzÞ0.

The coherent motion invz has the effect of detuning th
waves from exact resonance. The resonance condition fo
ion with vzÞ0 is

R[n102n202~Dkz!vzPZ, ~26!

FIG. 12. r vs t for the same parameters as in Fig. 1 except t
k1z50.001 andk2z50.

FIG. 13. vz vs t for the same parameters as in Fig. 12.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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2728 Phys. Plasmas, Vol. 10, No. 7, July 2003 Strozzi, Ram, and Bers
wheren10 andn20 are the wave frequencies in the laborato
frame, andn i5n i02kizvz . H̃ describes the ion’s motion a
long asR is close to an integer. ForDkzÞ0, vz changes
coherently. Condition~26! is not satisfied for all times, and
the resonant interaction becomes less effective. The cohe
change invz thus limits itself, which keepsR close to an
integer. Since the coherent changes inr̄ andv̄z are linked via
~19!, the coherent change inr̄ is also small.

Consider a distribution of ions with different initialvz0

interacting with two waves of frequenciesn10 andn20. For
Dkz50, all ions will be in resonance with the waves pr
vided n102n20PZ. For DkzÞ0, the resonance conditio
~26! implies that only ions with certainvz0 , namely

vz0'
n102n202n

Dkz

, nPZ, ~27!

FIG. 14. H6 and
1
2v̄z

2 vs r̄ for the same parameters as in Fig. 12.

FIG. 15. Averagejmin and jmax vs Dkz from H6 for k1z50.1, k2z5k1z

2Dkz , n1510.37 ~dotted! or 40.37~dashed!, and the other wave param
eters as in Fig. 1. Initial conditions and averaging are as in Fig. 6.
abscissa forn1540.37 has been rescaled by (10.37/40.37)3. If the scaling in
~30! were exact, the dotted and dashed lines would coincide.
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ent
are initially in resonance. Asvz changes coherently, they fa
out of resonance.

This situation is analogous to the case of two perp
dicularly propagating waves when the wave frequencies
not differ by an integer.12 Following Sec. IV C of Ref. 12,
the approximate Hamiltonian, correct to second order
wave amplitudes, that describes the coherent motion is

H̃off52
Dn

N
Ī 1H̃, ~28!

where (n12n2)5N1Dn and uDnu!1. In this case the barri-
ersH6 are given by

H652
Dn

N
Ī 1

1

2
v̄z

21S06uS2u. ~29!

The first term in~28! limits the coherent motion, and plays
similar role to 1

2v̄z
2 . Figure 16 shows the range of motion

j as a function ofDn. The largest range of coherent motio
occurs for Dn slightly different from 0, which allows
2(Dn/N) Ī to partly cancelS0 in Eq. ~29!.

As the wave frequencies are increased, the range inDkz

and Dn for which there is appreciable coherent motion b
comes much narrower. Letja(Dkz) be either the upper o
lower bound of coherent motion inj for wave frequencies
n1a andn2a5n1a2N. The asymptotic forms in Appendix B
indicate that for two different frequenciesn1b andn2b5n1b

2N,

jb~Dkz!'jaS S n1b

n1a
D 3

DkzD . ~30!

Supposeja is large fork1<Dkz<k2 , and thatn1b54n1a .
Thenjb is large only fork1/64<Dkz<k2/64. Coherent mo-
tion occurs over a smaller range ofDkz when the wave fre-
quencies are larger. Similarly,

e

FIG. 16. Averagejmin and jmax vs Dn from H6 for n25n1212Dn,
n1510.37 ~dotted! or 40.37~dashed! and the other wave parameters as
Fig. 1. Initial conditions and averaging are as in Fig. 6. The abscissa
n1540.37 has been rescaled by (10.37/40.37)4. If the scaling in~31! were
exact, the dotted and dashed lines would coincide.
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jb~Dn!'jaS S n1b

n1a
D 4

Dn D . ~31!

Figures 15 and 16 demonstrate the range of coherent mo
versusDkz andDn, respectively, and validate the scalings
~30! and~31! with wave frequency. As the wave frequenci
are increased,Dkz andDn must be much smaller for ions t
be energized to the stochastic region. Hence, just as in
cases of perpendicular propagation orDkz50, for nonzero
but smallDkz energization by waves with low frequencies
more advantageous than by waves with high frequencies

VI. CONCLUSIONS

We have shown that two electrostatic waves propaga
obliquely to an ambient magnetic field can coherently en
gize ions when their Doppler-shifted frequencies differ by
multiple of the ion cyclotron frequency. A second-ord
Hamiltonian, derived using the Lie perturbation techniq
accurately describes the coherent motion and agrees
with numerical simulations of the complete dynamical eq
tions. The energization of ions occurs regardless of the a
of wave propagation provided the parallel wavenumbers
the two waves are approximately equal. If the parallel wa
numbers are equal, there is no coherent acceleration alonB0

but considerable stochastic energization both along
acrossB0 . Moreover, the perpendicular coherent motion
quite similar to the case of perpendicularly propagat
waves. There is a small amount of coherent accelera
along B0 when the parallel wavenumbers differ, but th
causes the resonance condition to be violated. A differe
between the parallel wavenumbers is similar to the differe
between (v12v2)/vci and the nearest integer.

There is no threshold ion energy or wave amplitude
quired for the coherent acceleration. The change in the
gyroradius is linear in the wave frequencies and independ
of wave amplitude. The period of coherent motion is
versely proportional to the square of the wave amplitu
and is proportional to the fourth power of the wave fr
quencyv (v;v1;v2). Furthermore, the deviation from
resonanceDv5v12v22Nvci for which appreciable co-
herent acceleration occurs scales likev24, while the range
in Dkz5k1z2k2z for coherent motion scales likev23. This
implies that for lower-frequency waves coherent ion acc
eration is faster and less sensitive to small changes in w
parameters.

Coherent ion energization occurs for two waves w
appropriately chosen frequencies. An experiment is be
constructed that will be able to test the theoretical predicti
of this paper.21 Coherent acceleration also takes place in c
tain fields with a continuous frequency spectrum, and is c
rently being studied. Such a situation can occur naturally
the Earth’s ionosphere.13 Detailed analyses of a broad spe
trum of waves, and of the effects of weak collisions, rem
to be carried out in future work.
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APPENDIX A: LIE PERTURBATION METHOD
FOR TWO OBLIQUE WAVES

We develop the Lie perturbation method following Re
18 and 17 and follow the notation in Sec. 2.5 of Ref. 18.

The Lie method provides a HamiltonianH̄ that describes
just the coherent motion, and a change of coordinates
accounts for the incoherent fluctuations. The physical v
ablesx5(q,p) are governed by the full HamiltonianH(x),
and the new coordinatesx̄5(q̄,p̄) are governed byH̄( x̄).
x̄ depends onx and a parametere which orders the perturba
tion via

] x̄

]e
5@ x̄,w~ x̄,t !# x̄ , x̄~e50!5x, ~A1!

where @ f ,g#x5( i@(] f /]qi)(]g/]pi)2(] f /]pi)(]g/]qi)# is
the Poisson bracket. The old coordinates enter only as a
dition for e50, which ensures that the transformation for a
w is canonical and near-identity.

The operatorT relates the representation of a physic
quantity f in the two coordinate systems byf ( x̄)5(T f)(x).
In particular,f ( x̄)5 x̄ gives x̄5Tx. T satisfies

]T

]e
f ~x!52T@w~x,t !, f ~x!#x . ~A2!

H̄ is given by

H̄~ x̄!5T21H~x!1T21E
0

e

de8 T~e8!
]w~x,t !

]t
. ~A3!

The second term is not needed for an autonomous syste
We expandw, H, T, and H̄ in powers ofe and equate

terms at each order ine. Collecting terms in~A3! at each
order in e gives equations forwi . Upon carrying out the
perturbation expansion to second order ine, we find

D0w15H̄12H1 , ~A4!

D0w252~H̄22H2!2@w1 ,H̄11H1#. ~A5!

D0f [] t f 1@ f ,H0# is the time derivative along the unpe
turbed trajectories. All expressions here are functions of
same set of coordinates. For simplicity we usex for this
purpose, but the final expression forH̄ governs the evolution
of x̄. Clearly, H̄05H0 .

For T to be a near-identity operator,w must remain
small. We chooseH̄ i on the right-hand side of~A4! and~A5!
to eliminate any terms that would violate this conditio
Such terms are referred to as ‘‘resonant’’ terms.
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp



e

n
t

nd

ndi-

tis-
cond

ela-

2730 Phys. Plasmas, Vol. 10, No. 7, July 2003 Strozzi, Ram, and Bers
For the two-wave problem,H0 andH1 are given in~7!,
while Hi50 for i>2. Using a Bessel-function identity~see
p. 361 of Ref. 22!, we obtain

H15(
i

(
m52`

`

e iJm,i coscmi , ~A6!

whereJm,i[Jm(kixr) and cmi[mf1kizz2n i t1a i . Then
from ~A4!

~] t1]f1vz]z!w15H̄12(
i ,m

e iJm,i coscmi . ~A7!

The unperturbed orbits aref5t1f0 , z5z0 , vz50,
I 5I 0 ~in a frame where the ion’s initialvz050). Along these
orbits there are no resonant terms on the right-hand sid
~A7!, so we chooseH̄150. Then

w152(
i ,m

e iJm,i

m1kizvz2n i

sin cmi . ~A8!

SinceH2 and H̄1 are zero,~A5! leads to

~] t1]f1vz]z!w252H̄22@w1 ,H1#. ~A9!

From ~A8!

@w1 ,H1#5 (
i , j ,m,n

H e ie j

2r

1

m2m i

~2kjxmJm,iJn, j8

1kixnJm,i8 Jn, j !cosG11
e ie j

2r

1

m2m i

3~2kjxmJm,iJn, j8 2kixnJm,i8 Jn, j !cosG2

1
1

2
e ie j kizkjz

Jm,iJn, j

~m2m i !
2
~2cosG11cosG2!J ,

~A10!

where G6[cmi6cn j . Along the unperturbed orbits,G6

5$m2n i6(n2n j )%t1const. Some terms are resona
when i 5 j regardless of then i ’s. Other terms are resonan
when either 2n i , N1[(n11n2), or N[(n12n2) is an in-
teger. We constructH̄2 to cancel these terms:

H̄25S0~ I ,vz!1d2S2~ I ,vz!cos~~n12n2!~f2t !

1~k1z2k2z!z1a12a2!1d1S1~ I ,vz!

3cos~~n11n2!~f2t !1~k1z1k2z!z1a11a2!

1(
i

d iSi~ I ,vz!cos~2n i~f2t !12kizz12a i !, ~A11!

whered2 , d1 , andd i are unity when, respectively,N, N1 ,
and 2n i are integers and 0 otherwise. Equations~10! and~13!
give S0 andS2 , and
Downloaded 25 Jun 2003 to 18.62.13.5. Redistribution subject to AIP
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t

S152(
m

H e1e2

4r~m2m1!
~k1x~m2N1!Jm,18 J2m1N1,2

1k2xmJm,1J2m1N1,28 !1
1

4
k1zk2ze1e2

Jm,1J2m1N1,2

~m2m1!2

1the same with subscripts 1 and 2 switchedJ , ~A12!

Si52(
m

H e i
2

4r~m2m i !
(mkixJm,iJ2m12n i ,i8

1~m22n i !kixJm,i8 J2m12n i ,i)1
1

4
e i

2kiz
2

Jm,iJ2m12n i ,i

~m2m i !
2 J .

~A13!

The coherent Hamiltonian is

H̄~ x̄,t !5H0~ x̄!1H̄2~ x̄,t !. ~A14!

Using c̄5f̄2t as the coordinate conjugate toĪ , the trans-
formed Hamiltonian is

H̃~ c̄,z̄, Ī ,v̄z!5 1
2v̄z

21H̄2 . ~A15!

H̃ is a constant of the motion.
When only one resonance condition is satisfied, we fi

a second constant of the motion besidesH̃, which relatesĪ
and v̄z @when only N is an integer, this constant isv̄z

2(Dkz /N) Ī ]. The dynamical system described by~A15! is
thus completely integrable. When any two resonance co
tions are satisfied it is easy to see thatn1 andn2 must both be
half-integers. Then all four resonance conditions are sa
fied. It does not appear that, in this case, there exists a se
constant of the motion. The dynamics described byH̃ could
be stochastic.

To find the transformation relatingx and x̄, we expand
~A2! and usex̄5Tx. To first order ine we obtain

x̄5Tx'x2e@w1~x,t !,x#x1O~e2!. ~A16!

As desired, the coordinate change is near-identity. The r
tion betweenI and Ī is given in ~16!.

APPENDIX B: ASYMPTOTIC FORMS FOR S0 AND SÀ

Here we derive the asymptotic forms for the terms inH̃,
given in ~17!, using results in Refs. 5, 22–24. Fork1x5k2x

51, let

S0x5(
i 51

2

e i
2sx~r,m i ,0!, ~B1!

S2x5e1e2~sx~r,m1 ,N!1sx~r,m2 ,2N!!, ~B2!

S0z5(
i 51

2

kiz
2 e i

2sz~r,m i ,0!, ~B3!

S2z5e1e2k1zk2z~sz~r,m1 ,N!1sz~r,m2 ,2N!!, ~B4!

where
 license or copyright, see http://ojps.aip.org/pop/popcr.jsp
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sx~r,m,n!5~2 !n
p

8
cscmp~Jm11J2~m11!1n

2Jm21J2~m21!1n!, ~B5!

sz~r,m,n!5~2 !n11
p

4

]

]m
@cscmpJmJ2m1n#, ~B6!

andJm5Jm(r).
Bessel functions of negative order are replaced with

J2m'2sin~mp!Ym , ~B7!

whereYm is the Bessel function of the second kind. Usi
the asymptotic forms forJm andYm ,22 we obtain

s~m,r,n![Jm~r!Ym2n~r!;beg, ~B8!

b52
1

p
~m~m2n!tanha0 tanhan!21/2, ~B9!

g5m~ tanha02a0!2~m2n!~ tanhan2an!, ~B10!

sechan5
r

m2n
. ~B11!

For N11!m all then/m ’s are small, and to leading order i
n/m we find

b'2
1

mp
~12j2!21/2, ~B12!

g'2na0 , ~B13!

s'2
1

mp
s0~j,n!, ~B14!

s0~j,n![~12j2!21/2S j

11A12j2D n

. ~B15!

Thus,

sz'
p

4

]

]m
s~m,r,n! , ~B16!

'
f ~j,n!

m2
, ~B17!

f ~j,n![
1

4 S s01j
]s0

]j
D . ~B18!

Similarly,

sx'
p

8
~s~m11,r,n!2s~m21,r,n!! , ~B19!

'
p

8
~s1~e!2s1~2e!!, ~B20!
Downloaded 25 Jun 2003 to 18.62.13.5. Redistribution subject to AIP
s1~e!5
s0~j/~11e!,n!

m~11e!
, ~B21!

where e[1/m is small for m@1. Expandings1 to leading
order ine,

sx'
p

4
es18~0! , ~B22!

5
f ~j,n!

m2
. ~B23!

Thus,

sx'sz;
1

m2
. ~B24!

S0 andS2 both scale like 1/n1
2 whenn1'n2 .
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