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We assess when electron trapping nonlinearity is expected to be important in Langmuir waves. The

basic criterion is that the inverse of the detrapping rate �d of electrons in the trapping region of

velocity space must exceed the bounce period of deeply trapped electrons, sB � ðne=dnÞ1=2
2p=xpe.

A unitless figure of merit, the “bounce number” NB � 1=�dsB, encapsulates this condition and

defines a trapping threshold amplitude for which NB ¼ 1. The detrapping rate is found for

convective loss (transverse and longitudinal) out of a spatially finite Langmuir wave. Simulations

of driven waves with a finite transverse profile, using the 2D-2V Vlasov code LOKI, show trapping

nonlinearity increases continuously with NB for transverse loss, and is significant for NB � 1. The

detrapping rate due to Coulomb collisions (both electron-electron and electron-ion) is also found,

with pitch-angle scattering and parallel drag and diffusion treated in a unified manner. A simple

way to combine convective and collisional detrapping is given. Application to underdense plasma

conditions in inertial confinement fusion targets is presented. The results show that convective

transverse loss is usually the most potent detrapping process in a single f/8 laser speckle. For

typical plasma and laser conditions on the inner laser cones of the National Ignition Facility, local

reflectivities �3% are estimated to produce significant trapping effects. VC 2012 American Institute
of Physics. [http://dx.doi.org/10.1063/1.4767644]

I. INTRODUCTION

The nonlinear behavior of Langmuir waves (LWs) is a

much-studied problem in basic plasma physics from the

1950s to the present. In this paper, we focus on nonlinearity

due to electron trapping in the LW potential well. This

intrinsically kinetic effect has motivated theoretical work such

as nonlinear equilibrium or Bernstein-Greene-Kruskal (BGK)

modes,1 Landau damping reduction,2 nonlinear frequency

shift,3–5 and the sideband instability.6,7 Important applications

of trapping occur in LWs driven by coherent (e.g., laser) light,

including the laser plasma accelerator8 and stimulated Raman

scattering (SRS).9–11 The latter allows the prospect of laser

pulse compression to ultra-high amplitudes (the backward

Raman amplifier).12 In addition, SRS is an important risk to

inertial confinement fusion (ICF),13,14 both due to loss of laser

energy and the production of energetic (or “hot”) electrons

that can pre-heat the fuel. Ignition experiments at the National

Ignition Facility (NIF)15 have shown substantial stimulated

Raman backscatter (SRBS) from the inner cones of laser

beams.16 The current study is prompted primarily by SRS-

driven LW’s. Much recent work has focused on nonlinear ki-

netic aspects of SRS, including “inflation” due to Landau

damping reduction,17–21 saturation by sideband instability,22

and LW self-focusing in multi-D particle-in-cell simula-

tions,23–25 Vlasov simulations,26 and theory.27 One goal is to

find reduced descriptions, such as envelope equations, that

approximately incorporate kinetic effects.28–30

Our aim is to provide theoretical estimates for when

electron trapping nonlinearity is important in LW dynamics.

These allow for self-consistency checks—or invalidations—

of linear calculations of LW amplitudes. This work is, there-

fore, not primarily intended to study nonlinear LW dynam-

ics, although we do present Vlasov simulations to quantify

the onset of trapping in the presence of convective transverse

loss. We consider a single, quasi-monochromatic wave with

electron number density fluctuation dnðx~; tÞcosðkx� xtÞ,
and slowly-varying, unitless amplitude dN � dn=ne, where

ne is the background electron density. We refer to an electron

as “trapped” if it is within the phase-space island centered

about the phase velocity vp � x=k and bounded by the sepa-

ratrix in the instantaneous wave amplitude, regardless of

how long it has been there. The dielectric response of the

plasma depends on the distribution function, and therefore

manifests trapping effects only after enough time has passed

for the (typically space-averaged) distribution to be distorted.

We call such a distribution trapped or flattened, since trap-

ping produces a plateau in the space-averaged distribution

centered at vp. Deeply trapped electrons have an angular fre-

quency xB � xpedN1=2 (x2
pe ¼ nee2=�0me defines the plasma

frequency in SI units), known as the bounce frequency, cor-

responding to a bounce period sB � 2p=xB / dN�1=2. In our

language, an electron is trapped instantaneously, but a distri-

bution becomes trapped over a time �sB. For a process that

detraps electrons at a rate �d , the unitless “bounce number”

NB � 1=�dsB measures how many bounce orbits a trapped

electron completes before being detrapped.

Our estimates stem from the assumption that nonlinear

trapping effects are significant when NB is roughly unity.

Trapping nonlinearity develops continuously with wave am-

plitude, and is not an instability with a hard threshold. Vla-

sov simulations presented in Sec. IV of driven LWs with aa)Electronic mail: strozzi2@llnl.gov.
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finite transverse profile demonstrate this. In addition, transit-

time damping calculations31 show the reduction in Landau

damping varies continuously with NB and obtains a 2�
reduction for NB � 1. Bounce number estimates are

qualitative and demonstrate basic parameter scalings. The

quantitative role of trapping depends on the specific

application.

We consider two detrapping processes: convective loss

and Coulomb collisions. For a LW of finite spatial extent,

electrons enter and leave the wave from the surrounding

plasma (assumed here to be in thermal equilibrium, i.e.,

Maxwellian). Trapping will only be effective if these elec-

trons complete a bounce orbit before transiting the wave. We

find the detrapping rate for both longitudinal end loss, which

can be important in finite-domain 1D kinetic simulations,

and for transverse side loss in 2D and 3D. To quantify the

effect of trapping in a LW with finite transverse extent, we

perform 2D-2V simulations with the parallel Vlasov code

LOKI26,32 of a LW driven by an external field with a smooth

transverse profile. Our results are in qualitative agreement

with Sec. IV of Ref. 26. That work considered a free LW

excited by a driver of finite duration, while we consider a

driver that remains on.

We present a unified calculation of collisional detrap-

ping due to electron-ion and electron-electron collisions,

including both pitch-angle scattering and parallel slowing

down and diffusion. This relies on the fact that (see the Ap-

pendix) the distribution in the trapping region can be Fourier

decomposed into modes sin½npððvx � vpÞ=vtr þ 1=2Þ� for

n¼ 1, 3,…, and the diffusion rate of mode n is proportional

to n2. After a short time, only electrons in the fundamental

n¼ 1 mode remain trapped. The collisional detrapping rate

scales as 1=dN, since the trapping width in velocity increases

with wave amplitude. We discuss two ways to compare the

relative importance of detrapping by side loss and collisions,

which is complicated by their different scaling with dN.

Our calculations are applied to ICF plasma conditions,

particularly LW’s driven by SRBS on the NIF. Transverse

side loss out of laser speckles in a phase-plate-smoothed beam

is generally a more effective detrapping process than colli-

sions. The threshold dN for trapping to overcome side loss

decreases with density and increases with temperature,

while the collisional threshold decreases with density and

slightly increases with temperature. For conditions typical

of backscatter on NIF ignition experiments, namely,

Te ¼ 2 keV and ne ¼ 0:1ncr with ncr � x2
0�0me=e2 the critical

density for laser light of wavelength 351 nm, a reflectivity of

ð5� 1013 W cm�2=I0Þ2 produces linear Langmuir waves

above the side loss threshold. Such values are likely to occur

in intense speckles. We also show that smoothing by spectral

dispersion (SSD)33 is ineffective at detrapping in NIF-relevant

conditions.

The paper is organized as follows. Section II provides

some general considerations on our detrapping analysis. We

present in Sec. III convective loss calculations for both lon-

gitudinal (end) and transverse (side) loss. Section IV con-

tains Vlasov simulations with the LOKI code which study

the competition of trapping and side loss. Detrapping by

Coulomb collisions is treated in Sec. V. Our results are

applied to SRBS in underdense ICF conditions in Sec. VI.

We conclude in Sec. VII. The Appendix presents details of

our collisional derivation and discusses the validity of our

Fokker-Planck (FP) model.

II. GENERAL CONSIDERATIONS

This section presents our overall framework for estimat-

ing the trapping threshold, and lays out some definitions.

Consider the trapped electrons in a LW field, attempting to

undergo bounce orbits. There is a time-dependent condition

for trapping to distort the distribution significantly, even in

the absence of any detrapping process. For instance, if a LW

is suddenly excited in a Maxwellian plasma, electrons exe-

cute bounce orbits according to what we call the dynamic

bounce number

Ndyn
B ðtÞ ¼

ðt

0

dt0

sBðt0Þ
: (1)

The time dependence of sB allows for a slowly varying wave

amplitude dnðtÞ. Vlasov simulations presented in Sec. IV

show that trapping starts to significantly affect the dielectric

response when Ndyn
B � 0:5. That is, it takes a finite time for

the distribution to reflect trapping. The early works of

Morales and O’Neil2,4 indicate such behavior, where the

damping rate and frequency shift evolve over several bounce

periods until approaching steady values as the system

reaches a BGK state.1

To estimate the threshold for trapping to overcome a

detrapping process, we assume the wave has been present long

enough that Ndyn
B �1. The distribution has had enough time to

become flattened, to the extent the detrapping process allows.

For flattening to occur, an appreciable fraction of trapped elec-

trons must remain so for about a bounce period before being

detrapped. We are interested in the number of electrons in the

trapping region, and how long they stay there.

We define the “trapping region” to extend from

u ¼ up6utr=2, where utr � 4ðkkDeÞ�1dN1=2 is the full width

of the phase-space trapping island and kDe � vTe=xpe with

vTe � ðTe=meÞ1=2
. Throughout this paper, we use

uX � vX=vTe (2)

to denote the scaled velocity vX for various subscripts X. Let

NtrðtÞ denote the fraction of electrons in the trapping region

at the initial time t¼ 0, which continuously remain so to

some later time t (note Ntrðt ¼ 0Þ ¼ 1). At t¼ 0, we take the

electron distribution to be Maxwellian. The fact that

only some electrons in the trapping region lie within the

separatrix (depending on their initial phase kx) is not rele-

vant, since all the detrapping processes considered here are

insensitive to the electron’s phase in the wave. That is, the

rate at which electrons leave the trapping region is independ-

ent of kx.

The detrapping rate �d is defined by assuming exponen-

tial decay for the trapped fraction: Ntr ¼ e��dt. We allow for

several independent detrapping processes to occur simultane-

ously, in that the overall detrapping rate �d;O is the sum of

the rates �d;i for each ith process considered separately.

112306-2 Strozzi et al. Phys. Plasmas 19, 112306 (2012)
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Since a detrapping process generally does not strictly follow

exponential decay, we choose a critical fraction N�tr, which

obtains for a critical time t ¼ t�, and let �d ¼ lnð1=N�trÞ=t�.
�d is independent of N�tr for exponential decay. We set N�tr ¼
1=2 in what follows. Given the approximate nature of our

calculation, further refinement of �d has little value.

In the literature, detrapping processes are sometimes

approximated by a 1D kinetic equation with a Bhatnagar-

Gross-Krook relaxation (or simply a Krook) operator:34

½@t þ v@x � ðe=meÞE@v�f ¼ �K 	 ðnf0=n0 � f Þ: (3)

The linear electron susceptibility v for this kinetic equation is

vðx; kÞ ¼ � Z0ðfÞ
2ðkkDeÞ2

1þ i
�K

kvTe

ffiffiffi
2
p ZðfÞ

� ��1

; (4)

where f � x=kvTe

ffiffiffi
2
p

and Z is the plasma dispersion func-

tion.35 The Krook operator relaxes the electron distribution

function f to an equilibrium f0, and locally conserves number

density n ¼
Ð

dv f . The above operator does not conserve

momentum or energy, although it can easily be generalized

to do so. In a 1D-1V system, a Krook operator can mimic

detrapping by transverse convective loss (a higher space-

dimension effect) or Coulomb collisions (a higher velocity-

dimension effect), such as in Ref. 36. Any perturbation from

f0 decays exponentially at the rate �K , so �d ¼ �K for such

an operator. This is especially useful for a detrapping process

which has �d independent of wave amplitude; this is the case

for convective loss but not for collisions (as shown below).

SRS simulations with a 1D Vlasov code and Krook operator,

and its suppression of kinetic inflation, are presented in Ref.

37. In this paper, we do not use a Krook operator to model

detrapping, although we do use one in our 2D Vlasov simula-

tions to make them effectively finite in the transverse direc-

tion (a purely numerical purpose), and to include collisional

LW damping in our application to ICF conditions in Sec. VI.

We take the bounce period of all trapped electrons to be

sB, the result for deeply trapped electrons. The actual period

slowly increases to infinity for electrons near the separatrix.

We then define the bounce number for process i as

NB;i �
1

�d;isB
¼ dN

dNi

� �pi

: (5)

We have expressed NB;i as a ratio of the LW amplitude to a

“threshold” amplitude dNi, to some power pi. Recall that

trapping effects like the Landau damping reduction develop

continuously with dN, so the threshold for trapping nonli-

nearity is not a hard one. Besides the dN�1=2 dependence of

sB; �d;i also depends on dN in a process-dependent way. For

�d;i independent of wave amplitude, which we show below is

the case for convective loss, the power pi ¼ 1=2. This is not

the case for detrapping by Coulomb collisions, which is

shown in Sec. V to have pi ¼ 3=2. The overall detrapping

rate �d;O ¼
P

i �d;i, gives an overall bounce number via

N�1
B;O ¼

P
i N�1

B;i . We also define an overall threshold ampli-

tude dNO such that NB;O½dN ¼ dNO� ¼ 1; it is not generally

true that dNO ¼
P

i dNi.

III. CONVECTIVE LOSS: THEORY

In a LW of finite spatial extent, electrons remain in the

trapping region only until they transit the wave. This

detrapping manifests itself by longitudinal loss out of the

ends of the wavepacket (the x direction for our field repre-

sentation cosðkx� xtÞ), as well as transverse loss out the

sides. End loss is found by considering a wavepacket of

length Ljj and infinite transverse extent. We work in the rest

frame of the wavepacket, which may differ from the lab

frame depending on application. For instance, a free LW

propagates at group velocity vg ¼ 3v2
Te=vp for kkDe 
 1,

while a LW driven by a driver fixed in the lab frame (such

as the ponderomotive drive in SRS) will essentially be at

rest. For vtr 
 vp, we can treat all trapped electrons as mov-

ing forward at vp. Thus, for end loss Ntr;el ¼ 1� vpt=Ljj. To

find �d;el, we take N�tr;el ¼ 1=2, which gives t�el ¼ Ljj=vp and

�d;el ¼ Kelvp=Ljj with Kel ¼ ln2. The bounce number for end

loss is NB;el ¼ ½dN=dNel�1=2
, with exponent pel ¼ 1=2 and

threshold amplitude dNel ¼ ½2pKelupkDe=Ljj�2. In practical

units, dNel ¼ ð1:05� 1018=ne;ccÞTe;kVðup=Ljj;lmÞ2 where ne;cc

is in cm�3; Te;kV is in keV, and Ljj;lm is in lm.

For transverse side loss, consider a cylindrical wave-

packet of transverse diameter L? and infinite longitudinal

length. In N total spatial dimensions, the cylinder has an

N� 1 dimensional cross-section. Electrons with a Maxwel-

lian distribution are transiting the cylinder, with unnormal-

ized distribution f? ¼ uN�2
? exp½�u2

?=2� where u? is the

transverse speed and f?du? is the number of electrons per

du?. The average u? ¼ ð½p=2�1=2; ½8=p�1=2Þ ¼ ð1:25; 1:60Þ
for N¼ (2, 3), indicating that detrapping is faster in 3D than

in 2D.

We find the number of initially trapped electrons

ðj~x?j < L?=2Þ, that remain so after time t, by summing the

fraction of electrons with a given u? that remain trapped,

times f?. All electrons with ju?j > 1=t̂ with t̂ ¼ tvTe=L?
have escaped, so this sets the limits of integration. In 2D,

the trapped fraction is ð1� ju?jt̂Þ for ju?j < 1=t̂, and the

total trapped fraction is

N2D
tr;sl ¼ ð2pÞ�1=2

ð1=t̂

�1=t̂

du? e�u2
?=2½1� ju?jt̂� (6)

¼ erf½1=t̂
ffiffiffi
2
p
� þ ð2=pÞ1=2 t̂ðe�1=2t̂

2

� 1Þ: (7)

In 3D, we obtain

N3D
tr;sl ¼

ð1=t̂

0

du? u? e�u2
?=2

� 1� 2

p
ðarcsin½u? t̂� þ u? t̂½1� ðu? t̂Þ2�1=2Þ

� �
: (8)

The factor in square brackets is the trapped fraction. The lim-

iting forms are

N2D
tr;slðt̂ 
 1Þ � 1� ½2=p�1=2 t̂; (9)

112306-3 Strozzi et al. Phys. Plasmas 19, 112306 (2012)
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N2D
tr;slðt̂ � 1Þ � 1=½2p�1=2 t̂; (10)

N3D
tr;slðt̂ 
 1Þ � 1� ½8=p�1=2 t̂; (11)

N3D
tr;slðt̂ � 1Þ � 1=8t̂

2
: (12)

In both limits the decrease is more rapid in 3D than in 2D.

Figure 1 displays the various formulas for Ntr;slðtÞ.
The resulting detrapping rate, based on Ntr;sl ¼ 1=2, is

�d;sl ¼
KslvTe

L?
(13)

with Ksl ¼ ð1:02; 2:08Þ in (2D, 3D). As expected, the 3D

detrapping rate is faster. The 3D detrapping rate exceeds the

2D one by a larger factor than the average transverse speed

because the faster electrons leave first, and the relative sur-

plus of electrons in 3D over 2D (proportional to u?)

increases with transverse speed. A wavepacket with asym-

metric (e.g., elliptical) cross-section should have a rate

between the 2D and 3D result with L? taken as the shortest

transverse length. In a laser beam smoothed with phase

plates, elliptical speckles can be produced by certain

polarization-smoothing schemes or a non-spherical lens;

Langmuir waves driven by SRS in such speckles would also

acquire an elliptical cross-section.

Comparing the end loss and side loss rates gives

�d;el

�d;sl

¼ Kel

Ksl

vp

vTe

L?
Ljj
: (14)

vp is in the wavepacket frame. For the LW to not experience

strong Landau damping, we have vp > vTe. L?=Ljj depends on

the physical situation (laser speckles are discussed in Sec. VI).

The bounce number for side loss is analogous to end loss:

NB;sl ¼ ½dN=dNsl�1=2
, with exponent psl ¼ 1=2 and threshold

amplitude dNsl ¼ ½2pKslkDe=L?�2. In practical units and for

the 3D Ksl, dNsl ¼ ð9:44� 1018=ne;ccÞTe;kV=L2
?;lm.

IV. VLASOV SIMULATIONS OF CONVECTIVE SIDE
LOSS

In this section, we quantify the competition between con-

vective side loss and electron trapping in a driven Langmuir

wave. We use the parallel, 2D-2V Eulerian Vlasov code

LOKI.32 This code employs a finite-volume method which

discretely conserves particle number. The discretization uses

a fourth-order accurate approximation for well-resolved fea-

tures, and smoothly transitions to a third-order upwind method

as the size of solution features approaches the grid scale. This

construction enables accurate long-time integration by mini-

mizing numerical dissipation, while retaining robustness for

nonlinearly generated high frequencies. As a result, the

method is neither strictly monotone- or positivity-preserving

nor does it eliminate the so-called recurrence problem. This

occurs at a recurrence time of trec ¼ k=Dv when further linear

evolution of a sinusoidal perturbation cannot be represented

on a given grid.

Our simulations are 1D or 2D, with x the longitudinal

coordinate as above, and y the transverse coordinate. Only

electrons are mobile, there is a fixed, uniform neutralizing

background charge, and there is no magnetic field. The total

electric field is ~E ¼ Exx̂ þ Eyŷ ¼ ~Ed þ ~Ei, where the internal

electric field ~Ei ¼ �r/i and r2/i ¼ �q=�0. The external

driver field is ~Ed ¼ Edx̂ with

Ed ¼ E0AðtÞhðyÞcosðk0x� x0tÞ: (15)

There is no y component to the driver field, which would be

needed if the driver were derived from a scalar potential.

The temporal envelope A(t) ramps up from zero to unity over

a time 50=xpe and then stays constant. The transverse profile

h(y) is

hðyÞ ¼ cos2 2py

Ly
¼ 1

2
ð1þ cos k1yÞ; jyj < Ly

4
(16)

0 otherwise: (17)

k1 � 4p=Ly:
The numerical aspects of our runs are as follows. The x

domain extends for one driver wavelength, with periodic

boundaries for fields and particles. Nx ¼ 32 zones in x was

used for all runs in this paper, except for two Nx ¼ 64 cases in

Fig. 2(a). 2D runs had periodic boundaries for fields and par-

ticles at jyj ¼ Ly=2. A Krook operator with �KðyÞ ¼ 0

for jyj < 0:4Ly and rising rapidly in the boundary region

0:4 < jyj=Ly < 0:5 was used to relax the distribution to the

initial Maxwellian near the transverse boundaries. The runs

were, thus, effectively finite in y. We used Ny ¼ 11 to 45

zones in y, with more used for larger Ly and to check conver-

gence. The vx and vy grids both extended to 67vTe. Nvy ¼ 32

zones in vy were used throughout. Nvx is set by two require-

ments: the trapping region must be adequately resolved, and

recurrence phenomena must not be significant. We found

Dvx � 0:1vtr was sufficient to give converged results. LOKI’s

advection scheme is designed to mitigate aliasing problems,

and we only saw modest effects related to it when comparing

runs with different Nvx. The convergence of our numerical

results is shown in Fig. 2(a). The black curve is typical: it uses

Nx ¼ 32 and has a typical Dvx=vtr, which we kept similar by

varying Nvx with wave amplitude and k0.

FIG. 1. Trapped electron fraction Ntr;sl due to transverse side loss for a 2D

plane (blue) and 3D cylinder (red) region. The dashed curves are the appro-

priate early and late time limits. See Eqs. (6) through (12).
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We first present 1D runs with Ey ¼ 0 and h(y)¼ 1, which

are detailed in Table I. From linear theory with A(t)¼ 1,

Ex ¼ Elin
x cosðk0x� x0tÞ, where

Elin
x

E0

¼
���� 1

1þ v

���� ¼ ½ð1þ RevÞ2 þ ðImvÞ2��1=2: (18)

v is the linear electron susceptibility from Eq. (4) with

�K ¼ 0, evaluated at the driver k0 and x0. We chose x0 to

give nearly the maximum Elin
x for a given k0. For

k0kDe<0:53, a linearly resonant x0 exists where 1þ Rev¼ 0;

the maximum Elin
x then occurs close to this point. No linear

resonance exists for k0kDe > 0:53, which is called the loss of

resonance.36 Some x0 still maximizes Elin
x in this regime. The

non-resonant case differs from the resonant one, in that reduc-

ing Imv and Landau damping, e.g., by flattening the distribu-

tion at the phase velocity by electron trapping or some other

means, does not lead to a large enhancement in the Langmuir

wave response to an external drive. The term 1þ Rev in Eq.

(18) keeps Elin
x finite even if Imv ¼ 0. For the parameters of

the run 1D.7a, we find Elin
x =E0 ¼ 1:80 for the full, complex v,

while setting Imv ¼ 0 slightly increases it to Elin
x =E0 ¼ 2:01.

Similar logic applies to kinetic inflation of stimulated

Raman scattering. Electron trapping and the resultant Landau

damping reduction can greatly increase the scattering at a

resonant wavelength. However, scattering at a non-resonant

wavelength is not subjected to inflation, and can even

decrease, due to reducing Imv. Non-resonant SRS can occur

in a situation seeded away from resonance,21 or if the plasma

conditions are such that no resonance exists for any scattered

wavelength, namely, high Te and low ne.

Figure 2 presents the results of our 1D runs. Panel (a)

shows the time evolution of the amplitude of Ex for k ¼ k0,

normalized to the linear value from Eq. (18). Early in time

(xpet ¼ 100� 200) the linear response is achieved, which

validates the linear dispersion and properties of LOKI when

using the chosen grid resolution. As time progresses, the

response increases due to the damping reduction, and then

oscillates due to the interplay of the frequency shift and the

fixed driver. Similar behavior was seen in Ref. 28. We plot

the results vs. the dynamic bounce number Ndyn
B from Eq.

(1), using the time-dependent Ex, in the center and right pan-

els. Ndyn
B is, thus, a trapping-based re-scaling of time. The

other runs from Table I are included as well. The driver

strength E0 was chosen in runs 1D.35b, 1D.5a, and 1D.7a to

give similar bounce periods. In all cases, the linear response

is achieved after a transient period related to driver turn-on,

until Ndyn
B � 0:5. After this point, the response increases,

until the frequency shift develops at Ndyn
B � 1. As k0kDe

increases, the enhancement above linear response decreases.

This is likely due to the rapid increase of the frequency shift

with kkDe, as shown by most theoretical calculations, e.g.,

Ref. 4. For k0kDe ¼ 0:7, there is a slight enhancement to

1.3� the linear response, followed by a dip to about 0.7�
and subsequent oscillation about unity. This lack of signifi-

cant trapping nonlinearity agrees with the above discussion

of the non-resonant regime.

From Eq. (13), the 2D side loss rate is �d;sl ¼ 4:08vTe=Ly,

where we have taken L? ¼ Ly=4, the full-width at half-max

of h(y). The side loss bounce number is then

NB;sl ¼
Ly

25:6kDe
dN1=2: (19)

Recall that electrons feel the total electric field ~E (drive

plus interal), and dN is an equivalent density fluctuation.

Gauss’s law gives dN ¼ k0kDe 	 ~E0
x , where E0

x is the ampli-

tude of the k0 Fourier mode of the on-axis field Exðy ¼ 0Þ,

TABLE I. 1D LOKI runs with no transverse driver profile h(y).
~E0 ¼ E0e=mevTexpe. slin

B is found using Elin
x .

Run k0kDe x0=xpe Elin
x =E0

~E0 slin
B xpe Plot curve

1D.35a 0.35 1.22 11.9 1:25� 10�5 871 Red dash

1D.35b ” ” ” 5� 10�5 436 Solid black

1D.35c ” ” ” 2� 10�4 218 Blue dash

1D.5a 0.5 1.44 3.22 1:3� 10�4 434 Black dash

1D.5b ” ” ” 5:2� 10�4 217 Green dash

1D.7a 0.7 1.79 1.80 1:7� 10�4 430 Black dot

FIG. 2. (a) Amplitude of k ¼ k0 mode of Ex, scaled to linear response, vs. time for 1D LOKI case 1D.35b and four different resolutions: ðNx;NvxÞ ¼ ð32; 768Þ
(black), (64, 768) (green), (32, 384) (blue), and (64, 384) (red). (b) Ex vs. dynamic bounce number Ndyn

B from Eq. (1) using ExðtÞ from 1D LOKI runs in Table I

(see table for curve meanings). (c) Panel (b) for expanded domain. The black curve is the only run in (a) that appears in (b) and (c).
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and ~E ¼ Ee=mevTexpe denotes a normalized field. Using the

linear response from Eq. (18), we obtain the linear estimate

NB;sl ¼
Ly

25:6kDe

���� k0kDe

1þ v

����
1=2

~E
1=2

0 : (20)

The 2D LOKI runs are listed in Table II. All runs used

k0kDe ¼ 0:35; x=xpe ¼ 1:22, and ~E0 ¼ 2� 10�4, the same

as run 1D.35c. For these values, our linear estimate becomes

NB;sl ¼ Ly=884kDe.

The field magnitude Ex(y¼ 0) is plotted vs. the dynamic

bounce number Ndyn
B found using E0

x for the 2D runs in Fig.

3. The black curve is the analogous 1D run 1D.35c. For

Ndyn
B � 4, there is a continuous increase in the response with

profile width Ly. This allows us to quantify trapping nonli-

nearity vs. Ly, which we do in Fig. 4. The abscissa in that fig-

ure is the side loss bounce number, NB;sl, computed with

linear response as in Eq. (20). The ordinate is the field

enhancement due to trapping, scaled to the same quantity for

the 1D run. This is shown at times corresponding to several

values of Ndyn
B ranging from 0.75 to 2. These times are early

enough that the amplitudes have been mostly increasing,

with little oscillation due to the frequency shift. The curves

agree well, and demonstrate the continuous development of

trapping effects with wide profiles. Slightly more than half

the 1D trapping effect obtains for NB;sl ¼ 1, which vindicates

our NB � 1 approximate threshold for trapping.

The plasma response to a driver with transverse profile

h(y) differs from the 1D case. This can be seen in the ordi-

nate of Fig. 4 falling below zero for the smallest Ly ¼ 100.

There have been several linear calculations of transit-time

damping in LWs of finite extent, mostly by integration along

particle orbits.38,39 Reference 38 showed that, for a potential

with a step-function profile in space, the transit-time damp-

ing exceeds that for an infinite plane-wave for x=kvTe � 1,

while for x=kvTe � 1 it can be less. We adopt the alternative

approach of writing the response as a superposition of

responses to the Fourier modes comprising the drive. This is

particularly convenient for our h(y), which (when periodi-

cally repeated) is composed of only two Fourier modes. For

simplicity, we present the result for h(y) periodically

repeated, instead of the actual LOKI profile with compact

support over jyj < Ly=4. The compact case would lead to a

continuous Fourier transform rather than discrete series, and

introduce a line width around the dominant modes. This does

not change the qualitative result. Unlike Ref. 38, our com-

pact profile h(y) is not a step function but smooth, with h and

h0 continuous at all points (although h00 is not).

The drive Ed, made periodic in y, is

Ed ¼
E0

4
eiðk0x�x0tÞ 1þ 1

2
eik1y þ 1

2
e�ik1y

� �
þ c:c: (21)

A standard kinetic calculation, accounting for the fact that
~Ed has no y component and thus does not come from a poten-

tial, gives the field at y¼ 0

Elin
x ðx; t; y ¼ 0Þ ¼ E0jRj cosðk0x� x0tþ aÞ; (22)

2R ¼ 1

1þ v0

þ 1þ ð1þ ðk0=k1Þ2Þ�1vþ
1þ vþ

: (23)

Note that the linear Eyðy ¼ 0Þ ¼ 0 for our ~Ed . a is a real

phase. v is the collisionless susceptibility for �K ¼ 0 from Eq.

(4), which depends only on x and k ¼ j~kj. v0 ¼ vðk0;x0Þ and

FIG. 3. Amplitude of k ¼ k0 mode of Exðy ¼ 0Þ for 2D LOKI runs with

transverse driver profiles h(y) with various Ly. Run parameters and curve

meanings are given in Table II. Black curve is 1D run 1D.35c.

FIG. 4. Departure from linear response for 2D LOKI runs, scaled to the

same quantity from the 1D run 1D.35c. The colored curves are taken at

times when the dynamic bounce number Ndyn
B has reached the value indi-

cated by the colored text. NB;sl is found from linear response, using Eq. (20).

TABLE II. 2D LOKI runs with transverse driver profile h(y). All runs have

k0kDe ¼ 0:35; x0=xpe ¼ 1:22, and E0e=mevTexpe ¼ 2� 10�4, the same as

run 1D.35c.

Run Ly=kDe NB;sl ¼ Ly=884kDe Plot curve

2D100 100 0.113 red

2D200 200 0.226 dark blue

2D400 400 0.452 green

2D800 800 0.905 magenta

2D1200 1200 1.357 blue
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vþ ¼ vðkþ;x0Þ with kþ ¼ ðk2
0 þ k2

1Þ
1=2

. For k1 ¼ 0, we

recover the 1D result Eq. (18). Physically, the higher-k modes

induced by the transverse profile are more Landau damped (as

well as being slightly off resonance for the fixed x0), which

reduces the response. For the parameters of Table II, we find

jRj=jRj1D ¼ ð0:801; 0:948Þ for Ly ¼ ð100; 200Þ, where

jRj1D ¼ 11:9 is the value for Ly !1. We, thus, obtain a

slight decrease in the linear response for our sharpest profile

(Ly ¼ 100), and an insignificant change for wider ones. This

is borne out by Fig. 3. The red curve for Ly ¼ 100 shows no

signs of trapping, and reaches a steady level slightly more

than 0.8 times the 1D linear value. The blue curve (Ly ¼ 200)

shows a slight trapping enhancement, and reaches a steady

level slightly above 1.2� linear after about 2 bounce periods.

V. COULOMB COLLISIONS

Collisions remove electrons from the trapping region via

pitch-angle scattering (from electron-ion and electron-

electron collisions) as well as parallel drag and diffusion

(from only electron-electron collisions since mi=me � 1).

We adopt a Fokker-Planck collision operator, and discuss its

validity in the Appendix

@tf ¼ �0ð1þ ZeffÞu�3@l½ð1� l2Þ@lf �
þ 2�0u�2@uðf þ u�1@uf Þ: (24)

l ¼ cos h, where h is the pitch angle between ~u and the ux

direction, and u ¼ j~uj. �0 is a thermal electron-electron colli-

sion rate

�0 �
xpe ln Kee

8pNDe
: (25)

NDe ¼ nek
3
De and ln Kee ¼ 24� lnðn1=2

e =TeÞ (ne in cm�3; Te

in eV) is the electron-electron Coulomb logarithm appropri-

ate for Te > 10 eV (Ref. 40, p. 34). The effective charge

state is

Zeff �
X

i

fiZ
2
i

�Z

ln Kei

ln Kee
; (26)

where nI ¼
P

i ni is the total ion density, �Z ¼
P

i Zifi with

fi ¼ ni=nI;
P

i fi ¼ 1, and lnKei is the electron-ion Coulomb

logarithm.40

In Sec. VI, we apply our results to Langmuir waves gen-

erated by Raman scattering in underdense ICF plasmas,

which are typically low-Z. For instance, NIF ignition hohl-

raum designs currently use a He gas fill (with H/He mixtures

contemplated), and plastic ablators (57% H, 42% C atomic

fractions). This gives Zeff ¼ 5:08 when fully ionized and

ln Kei ¼ ln Kee. Be and diamond ablators are also being con-

sidered. For illustration, we take Zeff ¼ 1 as the lowest rea-

sonable value (fully ionized H), and use Zeff ¼ 4 (fully

ionized Be) to represent an ablator plasma.

It is useful to define a unitless time t̂ (different from the

side loss t̂ used above), which demonstrates some of the ba-

sic collisional scaling

t̂ � �ct

dN
; (27)

�c �
p2

16

�0

u3
p

ðkkDeÞ2 ¼
p

128

ðkkDeÞ5

ðx=xpeÞ3
ln Kee

NDe
xpe: (28)

Our collisional calculation of the trapped fraction is detailed

in the Appendix. The key observation is that the distribution

in the trapping region can be decomposed into Fourier modes

sin½npððvx � vpÞ=vtr þ 1=2Þ� for n¼ 1, 3,…, and the diffu-

sion rate of mode n is proportional to n2. After a short time,

only electrons in the n¼ 1 mode remain trapped, so it suffi-

ces to consider just the number in the n¼ 1 mode. At t¼ 0,

this is 81% of the total (the other 19% rapidly diffuses out).

The upshot is that Ntr;c, the fraction of initially trapped par-

ticles remaining in the fundamental mode after time t, is

Ntr;cðt̂; Zeff ; upÞ ¼ 0:81

ð1
0

du?u?exp½�u2
?=2� Dt̂�: (29)

Dðu?; up; ZeffÞ is given in Eq. (A12).

Equation (29) is an implicit, integral equation for t̂ as a

function of Zeff ; up, and Ntr;c. We find the “exact” solution

by performing the integral numerically, and interpolating t̂
for a desired Ntr;c. We derive an approximate solution, valid

for up � 1, for t̂ in the Appendix. The result is

t̂ � t̂0 þ t̂1u�2
p : (30)

t̂0 and t̂1 are both positive and depend only on Zeff , so t̂
decreases with increasing up. Figure 5 plots Ntr;cðt̂Þ for sev-

eral up and Zeff , using the exact results (solid curves) and the

approximate form for up !1 of Eq. (A19) (dashed curves).

Few electrons remain trapped at t̂ ¼ 1. The approximate

forms are quite good, even though up is not that large.

Figure 6 displays the relative error � � 1� t̂appr=t̂ex

between t̂ for Ntr;c ¼ 1=2 computed two ways. The exact t̂ex

FIG. 5. Trapped fraction due to collisions Ntr;c vs. unitless time t̂ defined in

Eq. (27). Solid curves are exact results from Eq. (29). ðup; ZeffÞ ¼ ð2; 1Þ, (4,1),

and (4,4) for black, red, and blue, respectively. Dashed red and blue curves are

approximate results for up !1 from Eq. (A19), which depend only on Zeff

and not up. Green dashed curve is 0:81exp½�2t̂�, the approximate form

neglecting the term proportional to t̂ in the denominator. Ntr;cðt ¼ 0Þ ¼ 0:81

and not unity due to electrons not initially in the fundamental ux mode.
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is found numerically, and t̂appr is from Eq. (30), with Eq.

(A20) for t̂0 and Eq. (A25) for t̂1. The agreement is excellent,

within 1% for most of parameter space.

The collisional detrapping rate �d;c is

�d;c ¼
�c

dN

lnð1=NtrÞ
t̂

: (31)

Note that �d;c � dN�1 since utr � dNþ1=2: the larger the

wave amplitude, the wider the trapping region extends in

velocity, and collisions take longer to remove the electron

velocity from this region. Recall that �d;c depends slightly on

the choice of Ntr due to the non-exponential decay of Ntr

with t̂; as with convective loss we choose Ntr ¼ 1=2.

The collisional bounce number is

NB;c ¼
dN

dNc

� �3=2

; dNc ¼ 2p
�c

xpe

lnð1=NtrÞ
t̂

� �2=3

: (32)

The amplitude exponent for collisions is pc ¼ 3=2, unlike

the convective loss value of 1/2. This stems from the fact

that �d for collisions is amplitude-dependent while for con-

vective loss it is not. We now construct the overall bounce

number NB;O for convective side loss and collisions, as out-

lined above. Assuming that separate detrapping processes

are independent, and their detrapping rates add, yields

N�1
B;O ¼ N�1

B;sl þ N�1
B;c ¼

dNsl

dN

� �1=2

þ dNc

dN

� �3=2

: (33)

We define an overall threshold amplitude dNO such that

NB;O½dN ¼ dNO� ¼ 1. Equation (33) gives a cubic equation

for a � dN
1=2
O

a3 � dN
1=2
sl a2 � dN3=2

c ¼ 0: (34)

There are two ways to compare the relative importance

of side loss and collisions. One is: for which process must the

wave amplitude dN be larger for trapping to be significant

(NB ¼ 1)? The other is: for a given dN, which process will

detrap more effectively? The two views are not equivalent,

due to the different dependence of the side loss and collisional

detrapping rate on dN. The first amounts to comparing the

thresholds dNsl and dNc, which can be computed just from

plasma and wave properties without knowing dN. The ratio of

detrapping rates can be written in terms of a critical amplitude

dNcr

�d;c

�d;sl

¼ dNcr

dN
; dNcr �

ln2

t̂Ksl

�c

xpe

L?
kDe

: (35)

VI. PARAMETER STUDY FOR ICF UNDERDENSE
PLASMAS

We now apply our analysis to ICF conditions where SRS

can occur, namely, the underdense coronal plasma. SRS is a

parametric three-wave process where a pump light wave such

as a laser (we which label mode 0) decays to a scattered light

wave (mode 1) and a Langmuir wave (mode 2). We restrict

ourselves to exact backscatter (SRBS; ~k1 anti-parallel to ~k0),

as this generates the largest k2 (smallest vp2=vTe) and thus

makes trapping effects more important (small transverse com-

ponents to ~k2 have little effect on the phase velocity). Both

measurements and simulations with the paraxial-envelope

propagation code pF3D41 have shown backscatter to be the

dominant direction for SRS. With ~ki ¼ kiẑ, the phase-

matching conditions are x0 ¼ x1 þ x2 and k0 ¼ k1 þ k2

with k1 < 0. We employ the (cold) light-wave dispersion rela-

tion x2
i ¼ ðckiÞ2 þ x2

pe for modes i¼ 0 and 1, and use the

vacuum wavelength ki ¼ 2pc=xi. Frequency matching, thus,

requires ne < ncr=4, with ncr;i � ð�0me=e2Þx2
i the critical den-

sity for mode i, and ncr ¼ ncr;0. For specific examples, we

choose k0 ¼ 351 nm, appropriate for frequency-tripled UV

light currently in use on NIF. Specific plasma conditions

thought to be typical for SRBS on NIF ignition targets, during

early to mid peak laser power, are ne=ncr ¼ 0:1 and

Te ¼ 2 keV ðk1 � 550 nmÞ.42 The scattered wavelength con-

tinuously increases during a NIF experiment, consistent with

the hohlraum filling to higher density.

An important case for this paper is LW’s driven by SRBS

in the speckles of a phase-plate-smoothed laser beam.43 For a

laser wavelength k0 and square RPP with optics F-number F,

the intense speckles have L? � Fk0 and Ljj � 5F2k0 (see Ref.

44). A speckled beam is not the only situation where SRS can

occur; for instance, there has been recent interest in re-

amplification of backscatter by crossing laser beams45 and

backward Raman amplifiers.46 However, for a single laser

beam, experiments at Omega and pF3D simulations show

speckle physics, and its modification by beam smoothing,

must be accounted for to accurately model SRS.47,48 Experi-

ments have also verified the increase in backscatter with

increased gain per speckle length, by changing the laser aper-

ture and thus the effective F.49 We, therefore, focus on speck-

les. On NIF, four laser beams, each smoothed by a phase plate

and with an overall F¼ 22 square aperture, are grouped into a

“quad” which yields an effective square aperture of F � 8.

We, thus, use F¼ 8 for illustration. As the beams of a quad

propagate through a target, they can separate from one

another, refract, and undergo other effects that change the

FIG. 6. Relative error � ¼ 1� t̂appr=t̂ex between the exact and approximate

results from Eqs. (29) and (30), respectively, for collisional t̂; see text for

details. The green curves are � ¼ ½�0:01; 0:01; 0:05�.
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shape of their effective aperture and speckle pattern. We do

not pursue this further here, but it should be born in mind

when applying our analysis. Also, the ratio L?=Ljj ¼ 1=5F is

so small that �d;el=�d;sl � ðKel=KslÞup=5F ¼ 0:0083up (3D) is

small for essentially all speckles of interest. Thus, side loss is

a more potent detrapping mechanism than end loss, in

speckles.

To quantify detrapping rates, we consider the threshold

amplitudes dNsl and dNc. Unlike dNsl; dNc depends on x2

and k2 of the Langmuir wave. For a given set of plasma con-

ditions, the choice of ðx2; k2Þ is not unique but depends on

the application. For SRS developing locally, one can choose

the LW corresponding to the largest growth rate for those

conditions. Another approach is to consider a single

scattered-light frequency as it propagates through a target.

We consider only k variations induced by spatial profiles and

not x variations due to temporal plasma evolution50 (which

is mostly relevant to stimulated Brillouin scattering). In this

case, the matching conditions given the local plasma proper-

ties dictate how k2 varies.

Figure 7 presents the local k1 for SRBS computed in

two ways. The black curves are found by phase-matching

with a “natural” LW, by which we mean x2 ¼ Re½x2c�
where complex x2c satisfies

1þ v½k2r;x2c� ¼ 0 (36)

with real k2r ¼ k0 � k1. To find x2c, we set �K ¼ 0 and

recover the usual collisionless v. We use �K 6¼ 0 below as a

simple way to include collisional LW damping when Landau

damping is negligible. The red curves in Fig. 7 are the k1

which maximizes the local spatial SRBS gain rate in the

strong damping limit51

@z ln i1ðk1; zÞ ¼ � 2pre

mec2

I0

x0k0

� �
k2

2

jk1j
Im

v
1þ v

� �
: (37)

We use the collisionless v with �K ¼ 0. The first bracket is

independent of k1, while the second bracket is not. The two

results for k1 in Fig. 7 are very close except for high-k2kDe

LW’s (low ne, high Te), where Landau damping and its vari-

ation with k1 is significant. We choose for convenience to

use k1 matched to a natural LW below. We display in Fig. 8

the k2kDe corresponding to two choices of k1. The black

curves use the k1 phase-matched to a natural LW (the black

curves in Fig. 7), while the red curves are for a constant

k1 ¼ 550 nm.

The side loss threshold dNsl is shown in Fig. 9, for

L? ¼ Fk0 and F¼ 8. It simply represents the variation in

kDe, and is independent of ðx2; k2Þ. Figure 10 depicts the col-

lisional threshold dNc for Zeff ¼ 1 and 4. The decrease of

dNc with electron density is mainly due to the decrease of

the ðkkDeÞ5 factor in �c (see Eq. (28)), which in turn is due to

the 1=v3
p fall in the Coulomb cross-section (see Eq. (25)).

The ratio dNc=dNsl is displayed in Fig. 11, which indicates

collisions have a minor effect except for low ne and low Te;

FIG. 8. Langmuir wave k2kDe phase-matched for SRBS with different k1

choices, for a pump wavelength k0 ¼ 351 nm. Black solid: k1 phase-matched

with a natural Langmuir wave, as in black solid curves of Fig. 7. Red dash:

k1 ¼ 550 nm (x’s fixed, k’s vary). Blue dot: k1 ¼ 550 nm black-solid contour

from Fig. 7.

FIG. 7. Wavelength k1 in nm for SRBS light (increments of 50 nm), for a

pump wavelength k0 ¼ 351 nm. Black solid: k1 phase-matched with a natu-

ral Langmuir wave, satisfying the dispersion relation Eq. (36) with �K ¼ 0.

Red dash: k1 for the maximum local SRBS spatial gain rate.

FIG. 9. Threshold Langmuir wave amplitude for side loss, dNsl, for

L? ¼ 8� 351 nm.
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this relative importance depends strongly on the transverse

length L? chosen for side loss. Figure 12 plots the critical

amplitude dNcr from Eq. (35). For dN > dNcr, the side loss

detrapping rate exceeds the collisional rate. dNcr is larger at

smaller ne, indicating collisional detrapping is more relevant.

2D particle-in-cell simulations with the VPIC code of Raman

amplifier experiments45,52 found that collisions mattered for

low-intensity seed light waves in a low-density plasma

(ne=ncr � 0:01).

The reflectivities which correspond to trapping nonli-

nearity can also be estimated. We assume that the LW’s are

in the strong damping limit,51 and write

dN ¼ 1

2

ðk2kDeÞ2

j1þ vj
V0V1

v2
Te

: (38)

Vi ¼ eEi=mexi is the oscillation velocity for light wave i;
in practical quantities we have ðVi=cÞ2 ¼ Iik

2
i =giP0,

with P0 � 2p2ð�0=e2Þm2
ec5 ¼ 1:37� 1018 W cm�2 	 lm2.

gi ¼ ½1� ne=ncr;i�1=2
reflects the decrease in group velocity.

With reflectivity R ¼ I1=I0, we find

dN ¼ I0

Icr
R1=2; (39)

Icr � 2
j1þ vj
ðk2kDeÞ2

Te

mec2

P0

k0k1

ðg0g1Þ�1=2: (40)

The “critical intensity” Icr is introduced for convenience.

Since trapping effects become significant for dN � dNi

where dNi is the detrapping threshold for process i, we define

the threshold reflectivity Rthr;i for which dN ¼ dNi

Rthr;i ¼
Icr

I0

dNi

� �2

: (41)

To illustrate the threshold reflectivity, we consider

SRBS of the phase-matched natural LW. The critical inten-

sity Icr is plotted in Fig. 13. We use v from Eq. (4) including

FIG. 13. Critical intensity Icr from Eq. (40) in W=cm2 relating laser intensity

I0 and reflectivity R to LW amplitude: dN ¼ ðI0=IcrÞR1=2.

FIG. 10. Threshold Langmuir wave amplitude for collisions, dNc. LW x2 and

k2 are for phase-matched SRBS with a natural LW (black solid curves of

Fig. 7), and pump wavelength k0 ¼ 351 nm. Black solid: Zeff ¼ 1. Red dash:

Zeff ¼ 4. From right to left, curves are for dNc ¼ ½1; 2; 5; 10; 30� � 10�4.

FIG. 11. Ratio dNc=dNsl from Figs. 9 and 10 for Zeff ¼ 4.

FIG. 12. Critical amplitude dNcr from Eq. (35) for Zeff ¼ 4. The side loss

detrapping rate is faster than the collisional one for dN > dNcr . Blue curves

are for dNcr ¼ 3� 10�5; 1� 10�4; 3� 10�4; 1� 10�3.
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the Krook operator �K 6¼ 0 to damp the LW when k2kDe is

small and Landau damping is ineffective. For this purpose,

we choose �K to be the collisional, unmagnetized frictional

drag rate in the electron momentum equation.53,54 This rate

is appropriate for the drag on the bulk sloshing motion of the

electrons in the LW electric field, and not collisions of reso-

nant electrons with v � vp. Icr minimizes in the lower-right

region near the 2:5� 1014 curve, where Landau and colli-

sional damping are both weak. The threshold reflectivity

Rthr;sl for trapping to overcome side loss is plotted in Fig. 14,

for a pump with I0 ¼ 1015 W=cm2. A small reflectivity pro-

duces a large LW in the lower-right corner where damping is

weak, thus allowing trapping to more easily occur.

Our analysis assumes a Maxwellian electron distribution

f. This is not well known in ICF plasmas, and is an active area

of research. For instance, nonlocal transport due to scale

lengths that are not sufficiently short compared to collisional

mean free paths, as well as hot electron generation by SRS-

produced LWs, lead to significant non-Maxwellian features.

This becomes more important for speeds larger than the ther-

mal speed, where collisions become less effective and which

LW phase velocities generically are. The dominant effect of

non-thermal f on our analysis is via the collisionless part of

Imv and the LW Landau damping rate, which depends sensi-

tively on f ðvpÞ, while Rev and the real frequency are deter-

mined by the bulk motion of the entire f. The low Te, high ne

parameter region, with small kkDe and large vp=vTe, is where

Landau damping is most susceptible to non-thermal f. But,

Landau damping is quite small here for a Maxwellian, and is

dominated by collisional damping. The latter relies on the

scattering of the bulk electrons on ions, and is therefore not

very sensitive to details of f. Our results should be somewhat

insensitive to the presence of non-Maxwellian tails.

We now consider the specific plasma conditions men-

tioned above as typical for SRBS on NIF ignition experi-

ments, namely, ne=ncr ¼ 0:1 and Te ¼ 2 keV.42 The phase-

matched SRBS modes have k1 ¼ 553 nm; k2kDe ¼ 0:297,

and x2=xpe ¼ 1:155. The calculated backscatter gain rate is

significant in both the CH ablator and He gas fill. The material

affects a trapping assessment only via collisions. From Fig.

11, for Zeff ¼ 4, we find dNc=dNsl ¼ 0:24, so we just consider

side loss. The 3D side loss detrapping rate is �d;sl ¼ 13:9=ps,

or a time of 1=�d;sl ¼ 0:072 ps. The side loss threshold is

dNsl ¼ 2:7� 10�3, the critical intensity is Icr ¼ 1:96

�1016 W=cm2, and the threshold reflectivity is Rthr;sl

¼ ð5:28� 1013 W cm�2=I0Þ2. A typical intensity for inner

cones of lasers in NIF ignition experiments of I0 ¼ 3

�1014 W=cm2 gives Rthr;sl ¼ 0:03. Larger beam-averaged

reflectivities are frequently measured in experiments, and

even larger values will occur in intense speckles.

Finally, we show that SSD33 is not likely to reduce trap-

ping effects in SRBS on NIF. Recent experiments have uti-

lized Df1 ¼ 45 GHz of SSD bandwidth in the fundamental,

1054 nm laser light. After frequency-tripling, this corresponds

to a speckle lifetime of tssd ¼ 1=ð3Df1Þ ¼ 7:4 ps. For the ref-

erence SRBS conditions discussed above, tssd � 100=�d;sl.

Thus, SSD is much less effective at detrapping than side loss.

Moreover, a Langmuir wave overcomes SSD detrapping

ðsB < tssdÞ for a very low amplitude of dN ¼ 2:5� 10�7, or a

reflectivity of ð4:9� 109 W cm�2=I0Þ2.

VII. CONCLUSIONS AND FUTURE PROSPECTS

This paper presented a framework for estimating when

electron trapping nonlinearity becomes important in

Langmuir-wave dynamics. Detrapping by convective loss in

the longitudinal and transverse directions was discussed, as

well as detrapping by Coulomb collisions (electron-electron

and electron-ion). 2D-2V simulations with the Vlasov code

LOKI quantified trapping effects in driven LWs with finite

transverse profiles, and showed that they increase with the

side loss bounce number as the transverse width increases.

These runs showed trapping has little importance for

kkDe ¼ 0:7, which is above the loss of resonance value of

0.53. We explained this in terms of Eq. (18), and related it to

the lack of kinetic inflation in non-resonant Raman scattering.

We applied our results to LWs driven by SRBS in NIF-

relevant conditions. An f/8 intense laser speckle was taken as

the LW size in order to estimate side loss. Side loss from

speckles is generally more effective at detrapping electrons

than collisions, although this is not the case for wider LWs

or high-Z plasmas. Linear response at the locally resonant

SRBS scattered wavelength allowed us to obtain a local

reflectivity needed for trapping to overcome side loss. This

gives small values (�1%) for plasma conditions from which

SRBS is thought to originate in current NIF experiments.

Moreover, it is the speckle, and not the lower beam average,

intensity that matters. Preliminary assessment of pF3D simu-

lations55 of NIF targets indicates that a significant fraction of

SRBS-generated LWs above our trapping threshold. Future

work will assess this, and attempt to incorporate trapping

effects into enveloped propagation codes like pF3D.
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APPENDIX A: DERIVATION OF COLLISIONAL
RESULTS

We restate our collision operator from Eq. (24)

1

�0

@f

@t
¼ ð1þ ZeffÞu�3@l½ð1� l2Þ@lf �

þ 2u�2@uðf þ u�1@uf Þ: (A1)

The second term describes collisions of tail electrons off

bulk electrons, and is valid for up � 1. The parallel (ux)

and perpendicular (u?) velocities are given by ux ¼ lu and

u? ¼ ½1� l2�1=2u with u 2 ½0;1� and l 2 ½�1; 1�. We com-

pute Ntr, the number of electrons initially trapped, that

remain so up to time t. That is, once an electron leaves the

trapping region its coherent bounce motion stops, even if it

re-enters the trapping region later. The trapping region

extends from ux ¼ up6utr=2 and over all u?.

Changing variables from ðl; uÞ to ðu?; uxÞ gives

1

�0

@f

@t
¼ ½Dxx@

2
u2

x
þ Dx@ux

þ Dx?@
2
uxu?

þD?@u? þ D??@
2
u2
?
�f : (A2)

The D’s are straightforward to work out, and we do not give

them. We assume utr is small, and order derivatives as

@=@ux � 1=utr and @=@u? � 1 (v? � vTe in physical units).

For sufficiently small utr, the dominant term is Dxx@
2f=@u2

x .

For up � 1, this is valid if utr 
 FðZeffÞ=up, where F is a

function of Zeff . With this approximation, the collision opera-

tor yields a 1D diffusion equation

1

�0

@f

@t
¼ Dxx

@2f

@u2
x

; (A3)

Dxx �
ðu2
? þ u2

pÞu2
?ð1þ ZeffÞ þ 2u2

p

ðu2
? þ u2

pÞ
5=2

: (A4)

We solve this equation subject to the outflow boundary

conditions f ðux ¼ u6; u?; tÞ ¼ 0 with u6 ¼ up6utr=2 the

boundaries of the trapping region. The initial condition for

the trapped distribution is f ¼ f0 exp½�ðu2
? þ u2

pÞ=2� (a Max-

wellian with ux evaluated at up) inside the trapping region,

and f¼ 0 otherwise. The number of trapped electrons is

Ntr ¼ 2p
ð1

0

du? u?

ðuþ

u�

duxf : (A5)

We choose f0 ¼ ð2putrÞ�1eu2
p=2 so Ntrðt ¼ 0Þ ¼ 1. f has the

solution

f ¼
X

n¼1;3;…

fnðu?; tÞsin npw; (A6)

fn ¼
2

p2nutr
exp½�u2

?=2� n2Dt̂�: (A7)

w � ðux � u�Þ=utr; t̂ is given by Eq. (27), and D � Dxxu�3
p .

The sum is over odd positive integers since the even terms

vanish. The trapped fraction becomes

Ntr ¼
8

p2

X
n

n�2

ð1
0

dx exp½�x� n2Dt̂�: (A8)

x � u2
?=2 is a dummy integration variable. The decay rate of

mode n goes like n2, as is typical of diffusion problems. Af-

ter a short time, the n¼ 1 term dominates. Retaining just this

term, and evaluating 8=p2 ¼ 0:81, we find

Ntr � 0:81I; (A9)

I �
ð1

0

dx e�W ; (A10)

W ¼ xþ Dt; (A11)

D ¼ ð1þ ZÞ2xð1þ 2axÞ þ 2

ð1þ 2axÞ5=2
: (A12)

To alleviate notation, we replaced t̂ with t, Zeff with Z, and

defined a � u�2
p .

The upshot is an implicit integral equation for t

Iðt; aÞ ¼ b � Ntr

0:81
: (A13)

Numerically finding t reveals it is linear in a for a < 1. We,

thus, write t ¼ t0 þ at1 and expand for a
 1

I � Iðt0; 0Þ þ at1@tIðt0; 0Þ þ a@aIðt0; 0Þ þ Oða2Þ ¼ b:

(A14)

We choose t0 such that Iðt0; 0Þ ¼ b. We find

Iðt; 0Þ ¼
ð

dx exp½�W0�; (A15)

W0 ¼ xþ D0t; (A16)

D0 ¼ 2ð1þ ZÞxþ 2: (A17)

Performing the integral gives an implicit equation for t

e�2t

1þ 2ð1þ ZÞt ¼ b: (A18)

This gives an exact formula for Ntr in the limit up !1

NtrðtÞ ¼
0:81e�2t

1þ 2ð1þ ZÞt up !1: (A19)

The temporal decay of Ntr is, thus, not strictly exponential.

This formula reflects the different mathematical character of

parallel dynamics from electron-electron collisions ! e�2t

and pitch-angle scattering from collisions with all species
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! ð1þ ZÞt. Equation (A18) is transcendental, and can be

“solved” in terms of the Lambert W function. We are inter-

ested in cases where t < 1, so we Taylor expand e�2t to order

t2 and obtain

t0 ¼
1� b

Y þ ½Y2 � 2þ 2b�1=2
; Y � 1þ bð1þ ZÞ: (A20)

This formula is valid (t0 real) for b above b0ðZÞ. For Z¼ 0,

we have b0 ¼ 51=2 � 2 � 0:236, and b0 decreases with Z.

For our choice of Ntr ¼ 1=2; b ¼ 0:617 > b0 for all Z. We

have used the quadratic formula in a form that demonstrates

the large-Z limit more clearly, which to leading order in Y is

t0 �
1� b

2Y
; Y � 1: (A21)

With Ntr ¼ 1=2 this becomes

t0 �
0:31

2:62þ Z
: (A22)

This form is accurate to within 10% for all Z � 0. The cor-

rection for finite a is

t1 ¼ �½@aI=@tI�jt¼t0;a¼0 (A23)

¼ �t0

ð1
0

dxexp½�W0�ð@aDÞja¼0ð1
0

dxexp½�W0�D0

: (A24)

The result is

t1 ¼ t0

11þ 6Z þ 10t0ð1þ ZÞ
ð1þ 2t0ð1þ ZÞÞð2þ Z þ 2t0ð1þ ZÞÞ : (A25)

Using Ntr ¼ 1=2 and our approximate form for t0,

t1 �
1:15þ 5:70Z�1 þ 6:09Z�2

Z þ 7:23þ 16:3Z�1 þ 11:7Z�2
: (A26)

1. Validity of FP Model

Our FP model neglects large-angle scattering, which can

detrap electrons in a single collision. We estimate their impor-

tance, and show that the FP detrapping rate dominates. As an

example, we use the case from the end of Sec. VI, namely,

ne=ncr¼0:1; Te¼2 keV; k1¼553 nm, k2kDe¼0:297; x2=xpe

¼ 1:155, and Zeff ¼ 4, giving ln Kei ¼ 7:5. Consider a trapped

electron with vx ¼ vp and a typical v? ¼ vTe, which is elasti-

cally scattered (j~vj ¼ ðv2
p þ v2

TeÞ
1=2 ¼ const:) to the boundary

of the trapping region in one collision. The electron’s (initial,

final) angle with respect to the v̂x direction is ðhI; hFÞ

cos hI ¼
up

ðu2
p þ 1Þ1=2

; (A27)

cos hF ¼
up � utr=2

ðu2
p þ 1Þ1=2

: (A28)

The critical angle hc ¼ hF � hI separates large from small

scattering angles, and is given without approximation by

2dN cot2 hc

2
¼ �2dN þ 2

x
xpe

dN1=2 þ ðkkDeÞ2

þ kkDe½ðkkDeÞ2 þ 4ðx=xpeÞdN1=2 � 4dN�1=2:

(A29)

Figure 15 shows hc for our example parameters. For

dN 
 1, we have

hc �
2dN1=2

½ðkkDeÞ2 þ 2ðx=xpeÞdN1=2�1=2
: (A30)

We employ the potential for Yukawa-screened

Coulomb scattering of an electron by an ion of charge Z:

V ¼ �ðUe=rÞe�r=kDe with Ue � Ze2=4p�0. The quantum

cross-section,56 in the first Born approximation, is

1

rT

dr
dX
¼ 1þ d

4p
d

ðdþ sin2ðh=2ÞÞ2
: (A31)

rT � 4pð1þ dÞ�1ðUe=�hxpeupÞ2 is the total cross-section,

and d � ð�hxpe=2upTeÞ2 is unitless and typically small. For

our example parameters, d ¼ 5:14� 10�9. The cross-

section, integrated from h1 to h2, is

rj21
rT
¼ ð1þ dÞd sin2ðh2=2Þ � sin2ðh1=2Þ

ðdþ sin2ðh1=2ÞÞðdþ sin2ðh2=2ÞÞ
: (A32)

The total cross section from h1 ¼ 0 to h2 ¼ p is finite (with-

out imposing any cutoffs) and equals rT . The cross sections

for small-angle scattering rS (h1 ¼ 0 to h2 ¼ hc) and large-

angle scattering rL (h1 ¼ hc to h2 ¼ p) have the ratio

rL=rS ¼ dð1þ dÞ�1
cot2ðhc=2Þ. For our example parameters

FIG. 15. Black: angle hc separating small- from large-angle scattering from

Eq. (A29). Red: Ratio �L=�d;c from Eq. (A33), with the dN ¼ 0 value

marked.
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rL < 0:01rS for dN > 5� 10�8. There are many more

small- than large-angle scatters, which is necessary for a FP

model to be valid.

The detrapping rate due to large-angle scatters is

approximately the rate at which our typical electron under-

goes one such scatter, i.e., �L ¼ nirLv. We compare �L for

1þ d � 1 to the FP detrapping rate, just due to electron-ion

collisions and using t̂ � t̂0

�L

�d;c
¼ 0:36

ln Kei

dN cot2ðhc=2Þ
ðkkDeÞ2

(A33)

� 0:36

log Kei
dN 
 1: (A34)

The ratio depends only on ln Kei for small dN, so the FP

result captures the basic parameter dependence. Large-angle

scattering enhances the FP detrapping rate by a modest

amount. For our parameters, �L=�d;c ¼ 0:048 at dN ¼ 0, and

the ratio is plotted in Fig. 15. Since the FP results were found

for dN 
 1, the comparison of �L and �d;c may not be accu-

rate at large dN.
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