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Abstract

This thesis explores chaotic behavior and response to variations of atmospheric winds in several

simple models of the El Niño. We first analyze a three-variable ODE system that possesses intrinsic

chaos, and reproduce El Niño behavior by including a background easterly wind. We also see that El

Niño event onset is partly locked to an explicit seasonal cycle, and that stochastic forcing in the wind

field does not alter the model’s qualitative features. We then examine a more complete ocean model

based on the shallow-water equations, with a parametrized atmosphere acting as a surface stress.

We couple a seasonal wind and Walker circulation to the ocean via a switched mechanism (SFM)

and a also a more realistic continuous one (CTM), where the Walker wind strength is determined by

the eastern thermocline depth. Both of these systems produce interannual oscillations but seem to

become periodic. Using a nonuniform background wind stress, the CTM still has some irregularity

after a long time, especially in the height of warm peaks. Analyzing El Niño events in this system

reveals strong coupling of onset time to the seasonal cycle and a tendency for strong events to be

followed by longer calm stretches. Wind noise is then added to both models, showing that the SFM

is extremely sensitive to small changes in the eastern thermocline near the critical value which

controls the switch. The CTM is not as sensitive, but wind noise can significantly influence the

ocean’s evolution. Both models retain their basic characteristics in the presence of noise. Finally,

we see that the CTM appears to be a driven oscillator with the wind events acting as impulsive

forces that produce transients. While the events can have a strong effect on the ocean, this does

not appear until at least a year after the event occurs. Wind events are therefore unable to trigger

El Niño in the CTM, although they clearly do this in the SFM. These results show that varying

the precise nature of the wind stress and the way it is coupled to the ocean can produce drastically

different model behavior and sensitivity to wind events. In particular, the relation of the Walker

circulation to the eastern thermocline El Niño governs whether events can bring about an El Niño.



Acknowledgements

Countless people bear part of the responsibility for this thesis, some of whom must unfortunately

remain nameless. My parents have not only been completely supportive of me throughout my life,

but have also wisely never revealed any preference about what theses I chose to defend. I thank

my advisor, Dr. Geoffrey Vallis, for his encouraging me to explore what I found interesting, his

flexibility, and his tolerance of my nagging. Most of what I know about dynamical systems I

owe to Dr. Philip Holmes, who also made constructive suggestions on the work presented in

Chap. 2. This chapter is partly based on a paper written for the MAE 571 class he taught in the

Fall 1998 semester. Ron Pacanowski greatly helped this project by sharing his FORTRAN shallow-

water model code and substantial expertise in numerical simulation with me. On a similar note, I

apologize to my Intel AMD-Inside computer for the 2N bits, adds, multiplies, and occasional full

C: drive. Matt Harrison provided useful insight regarding Westerly Wind Events. Martin Kemp

and Dilum Ranatunga were invaluable sources of C++ lore. My other friends and roommates

would doubtlessly take issue with me if I failed to mention how important they have been to me,

and how much lighter a burden they have made this thesis. I should also thank my countrymen;

the politics of recent history has provided a constant source of amusement, heated conversation,

and procrastination, if not inspiration.

Dedicated to Maryann Behr, who switched me from the irregular state of wanting to President

of the United States.

i



Cast of Characters

The following acronyms are used throughout this thesis, and are defined on the page cited.

AED: Average η Difference (p. 39)

CTM: Continuous Tanh Model (p. 33)

ODE: Ordinary Differential Equation

PDE: Partial Differential Equation

SFM: Switched Forcing Model (p. 28)

SST: Sea Surface Temperature (p. 1)

SWM: Shallow-Water Model (p. 21)

WWE: Westerly Wind Event (p. 42)

This thesis represents my own work, written in accordance with University regulations.

David Strozzi

April 26, 1999

ii



Contents

1 Overview of ENSO 1

2 A Simple Chaotic Model 6

2.1 The Basic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 The Background Surface Wind x∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Effects of Seasonal Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Stochastic Forcing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Forced Shallow-Water Models 21

3.1 The Shallow-Water Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Wave Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 A Switched Forcing Mechanism (SFM) . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 A More Realistic Forcing Function (CTM) . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Noise and Westerly Wind Events 37

4.1 Stochastic Noise in the Wind Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.2 Effects of Westerly Wind Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Conclusions and Future Prospects 47

iii



Chapter 1

Overview of ENSO

Although the climate phenomenon known as El Niño has become a topic of heavy scientific, com-

mercial, and popular interest in recent years, it has been an important part of human life for

centuries. The term initially referred to abnormally warm waters flowing southward along the

Peruvian coast around the Christmas season. The devout inhabitants of the region dubbed these

warm currents “El Niño” (Spanish for “the Boy”), in reference to the Christ child. Such currents

appear annually, but about every 2 to 4 years the amount of warm water is much larger than during

a typical year. These anomalous currents inflict great damage to the fish and plankton populations

off the Peruvian coast, and have a devastating impact on the local economy. Among scientists,

the term El Niño is reserved for these irregular events and associated geophysical phenomena. The

earliest record of an El Niño dates from Fransisco Pizarro’s campaign logs of 1525-1526, where un-

usually abundant conditions in Peru’s deserts caused by the event may have allowed him to invade

Cuzco.

Understanding of the El Niño was greatly advanced when Berlage in 1957 noticed that sea

surface temperatures (SSTs) along the Peruvian coast are correlated with an atmospheric phe-

nomenon called the Southern Oscillation (SO). An important feature of the tropical Pacific is the

tendency for low surface atmospheric pressures and rising air in the west (around Indonesia) to be

matched with high pressure and sinking air in the southeast. This pressure gradient, along with

the vanishing of the wind-field divergence in order to conserve mass, drive the dominant easterly

(westward-blowing) surface trade winds. This system is known as the Walker circulation. The SO

refers to the negative correlation between changes in western and eastern air pressures; that is, an

1



increase in one is generally simultaneous with a decrease in the other. It is now well established

that the appearance of high pressures in the west is strongly coupled to the onset of El Niño events.

Bjerknes in the 1960s attempted to explain this correlation through a coupled ocean-atmosphere

model. A highly productive way to look at the tropical ocean is as consisting of two layers, a warm,

shallow surface layer on top of a cold, deep abyss. Temperature changes rapidly at the thin interface

between the two, called the thermocline. Atmospheric winds clearly act as a body force on the

ocean surface and can drive surface currents. The usually-westward trades therefore tend to move

warm surface water to the western Pacific. This depresses the thermocline in the west and elevates

it in the east, leading to the tendency for the Pacific to be warmer in the west than east. Consider,

however, a decrease in the westward trades. This will allow some surface water to flow eastward,

thereby depressing the eastern thermocline and raising the SST. The convective tendency of warm

air to rise must be balanced by a horizontal convergence of winds to maintain zero total divergence.

The trades will therefore blow more to the east, and we have positive feedback between the tropical

ocean and atmosphere which allows disturbances to grow. The high western pressure corresponds

to the self-amplifying westerly surface winds, thereby connecting El Niño with the SO. This rough

sketch of Bjerknes’ basic ideas captures in broad strokes our current picture of the mechanism

driving El Niño. Since it involves a Pacific-wide change in the trade winds, it relates the local El

Niño along the Peruvian coast with larger-scale geophysics.

Over the last few decades, the theory of El Niño has been significantly fleshed out. It is widely

accepted that the phenomenon depends essentially on ocean-atmosphere interactions, and the El

Niño-Southern Oscillation ensemble is frequently referred to simply as ENSO. In addition, the older

view that El Niño events are anomalies occurring against a backdrop of typical conditions has been

abandoned. Philander has advanced the idea that the warm periods are part of an asymmetric

cycle with resonant periods, and has named the cool periods La Niña [15]. Our current refined

understanding of ENSO has benefited from the fairly complete hierarchy of models of varying

complexity, ranging from simple ODE models to full-blown general circulation models (GCMs).

It is particularly notable that intermediate coupled models (ICMs), which are not much more

sophisticated than the model presented in Chap. 3, seem to outperform the GCMs in predicting El

Niño. This suggests that simple physics lies at the core of the phenomenon.

The relation between ENSO and the annual cycle is fundamental but not completely understood.
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The seasonal cycle is responsible for switching the ocean between its warm and cold states in many

models, such as [1] (discussed at length in Chap. 3). Others, including the celebrated Cane and

Zebiak model [4], treat El Niño as a perturbation to the time-averaged annual cycle. It is also

well-known empirically that the onset of El Niño is strongly phase-locked to the time of year, with

events usually starting when the easterly trades are near the annual minimum. This relationship

can be reproduced by even some of the simplest models, and is present in the systems examined

below. The seasonal cycle is also one of the dominant time scales in the problem, and a major

area of El Niño research has been to determine why the period between observed oscillations is

interannual as opposed to yearly. An important theoretical advance in this regard was the delayed

oscillator models, the essential ideas of which were presented in terms of an ODE system in [21].

The nonlinear system studied there is:

dT

dt
= T − T 3 − αT (t − δ). (1.1)

This system can produce oscillations separated by several times the delay δ, depending on the

parameter regime.

Linked with wave phenomena, the delayed oscillator is able to partly account for the El Niño

time scale in ICM simulations. The main processes which connect conditions in different regions

of the Pacific are Kelvin and Rossby waves in the ocean (defined in Chap. 3). Near the equator,

fast eastward-moving Kelvin waves are reflected as slow, westward-moving Rossby waves, which

are then reflected back eastward as Kelvin waves. It is through this cycle that the ocean provides

the “memory” in the system of past atmospheric wind stress. Taking δ to be wave transit times, it

is possible to get 2-4 year periods via the multiplying scheme of the delayed oscillator. Models of

the El Niño are now sophisticated enough that events can be predicted 6 to 9 months in advance.

There is furthermore some understanding of the connection between ENSO and other climatic

irregularities throughout the world, such as weaker summer monsoons in India and severe winters

in the eastern United States. Such large-scale couplings are called teleconnections and appear to

be fairly common. As a result, long-term weather prediction routinely takes them into account.

Certain mathematical aspects of El Niño models have been of particular “pure” scientific in-

terest. First, the system occurs at irregular intervals usually ranging from 2 to 5, but sometimes
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as much as 10, years. This raises the question of whether events result from chaos inherent in the

large-scale dynamics or from stochastic forcing. Further support for the chaos viewpoint comes

from other aspects of the El Niño: events occur quasi-periodically, each event seems to be unique

from others, and they display self-similarity (i.e., smaller-scale phenomena resemble the large-scale

event). The leading chaos hypothesis is that the ENSO mode interacts nonlinearly with the sea-

sonal cycle in the coupled ocean-atmosphere system. This has been observed in a number of ICMs,

where the system follows either the quasi-periodic or period-doubling route to chaos. However, the

parameter ranges over which many sophisticated models are chaotic are relatively small. In the

stable or periodic regimes, El Niño oscillation can be produced with stochastic forcing added via

weather “noise” in the atmosphere. Realistic noise of this type seems able to produce behavior that

is generally consistent with observation.

Another important issue is the predictability of El Niño onset. In particular, how far in advance

can an event be predicted? Chaos and stochastic forcing both obviously limit forecasting abilities.

Much work is currently underway to study how sensitive different models are to perturbation of

initial conditions and random forcing. Many believe that it is possible with measured data of

reasonable precision to predict events 1 to 2 years in advance, but not much beyond that. Another

topic of recent interest in El Niño prediction is the role of westerly wind events in the western

Pacific. There is some correlation between their occurrence and the Southern Oscillation, leading

some to think that disturbances they generate in the western Pacific can propagate eastward and

promote El Niño. The introduction to ENSO presented here draws largely on the review articles

[6] and [13]. The former discusses the scientific and more general history of the phenomenon, while

the latter outlines extensively the development of ENSO theory.

In this study, we first examine a low-order chaotic model for El Niño developed by Vallis

[22]. We see that a background westward wind causes this system to favor a cold eastern ocean,

with occasional El Niño events (excursions to a warm state at aperiodic, interannual intervals).

As in nature, event onset time is coupled to the seasonal cycle. Although even tiny stochastic

wind variations perturb solutions significantly, the basic character of the model is robust to large

noise. We then consider a more detailed ocean model based on the shallow water equations with

parametrized atmospheric forcing. We demonstrate that a simple switched forcing (the SFM)

produces interannual oscillations, and that the eastern ocean tends to be cold when a background
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westward wind is added. This model does not produce irregular oscillations, and we modify it

with a continuous wind-ocean coupling function (the CTM) that leads to more varied behavior.

This model is aperiodic in the presence of a background wind stress that gradually dies off with

distance from the equator, while it becomes periodic for a step-function wind. While fairly small

wind noise is able to switch the forcing and therefore change the large-scale ocean state in the SFM,

the continuous one is less sensitive to noise. Nonetheless, stochastic winds of reasonable strength

are still able to change the ocean’s state in this model given enough time. We close by considering

the effects of western wind events on this model. Wind events clearly throw the SFM into an El

Niño state shortly after occurring, but they have little immediate influence on the CTM and do

not trigger El Niños in it. In the latter, events act like impulsive forcing to a damped, driven

oscillator that generate major transients for several years, perhaps permanently altering the ocean.

The models considered here suggest that the wind structure and its coupling to the ocean is a

crucial factor in determining how the ocean evolves and responds to wind events, with the ocean

being more stable under a less drastic switching of the Walker circulation with eastern thermocline

depth.
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Chapter 2

A Simple Chaotic Model

In this chapter, we study a chaotic system based on convection and nonlinear advection that repre-

sents the large-scale interaction of surface winds with ocean temperature. By choosing parameter

values appropriate for the Pacific and including the observed background easterly trade winds, the

model behaves similarly to the real El Niño. This demonstrates that chaos internal to the basic

large-scale physics may account for such fundamental aspects of the El Niño as aperiodicity, an

eastern warm-cold asymmetry, and an interannual time scale. Introducing a seasonal cycle in the

parameters phase-locks event onset to time of year, as is known to occur in nature. Even small sto-

chastic forcing of course has a sizeable effect on this chaotic system, but its qualitative El Niño-like

behavior is robust to wind noise.

2.1 The Basic Model

Using physical arguments, Vallis motivated a simple, three-parameter model for the eastern equa-

torial Pacific [22]. In the notation of [23], the model is:

u̇ = B(Te − Tw) − C(u − u∗) (2.1a)

Ṫw =
u

2∆x
(T − Te) − A(Tw − T ∗) (2.1b)

Ṫe =
u

2∆x
(Tw − T ) − A(Te − T ∗) (2.1c)

ḟ denotes df/dt. u is the surface wind velocity (positive for eastward flow), and Te and Tw are
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Figure 2.1: Diagram of physical model for Te > Tw.

the water temperature in the eastern and western Pacific, respectively. The temperature difference

in Eq. 2.1a stems from the tendency for a convective cell to form (hot air rising, cold air sinking).

C reflects wind damping due to friction and other dissipative mechanisms. u∗ represents the mean

wind flow in the region (which is typically westward, that is, u∗ < 0). In Eqs. 2.1b-2.1c, the

nonlinear u(Te,w −T ) terms account for horizontal advection of water induced by the surface wind,

with T being the (constant) deep-ocean temperature below the thermocline. T ∗ is the equilibrium

ocean temperature in the absence of wind, determined by balance with heating from above and

radiative processes. We can set T = 0 without changing the problem; this simply shifts the

temperature zero-point. Fig. 2.1 contains the model’s essential features.

We can consider our three-parameter model as a two-point central-difference discretization in

T of the following PDEs:

DT (x, t)

Dt
=

∂T

∂t
+ u

∂T

∂x
= A(T ∗ − T ) (2.2)

du

dt
= B (T (l) − T (0)) + C(u∗ − u). (2.3)

D/Dt denotes the material derivative, so the first equation simply states that T of a fluid parcel

changes only due to its difference from the equilibrium T ∗. x is the equatorial east-west position. If

we imagine incompressible flow along a narrow pipe of length l, then the velocity must be constant

throughout by mass conservation, giving u = u(t). As pointed out in [23], the chaos present in our

ODE system does not appear if we differentiate Eq. 2.2 with a forward-difference scheme.
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Although this model neglects numerous effects (the Earth’s rotation, the pressure field, wave

phenomena), it is simple enough to be studied analytically and recovers many observed El Niño

properties. It is useful to work in unitless variables:

ẋ = B̂y − Ĉ(x − x∗) (2.4a)

ẏ = xz − y (2.4b)

ż = −xy − (z − 1). (2.4c)

x(x∗)=u(u∗)/(2A∆x), y=(Te − Tw)/2T ∗, z=(Te + Tw)/2T ∗, B̂=T ∗B/(∆xA2), Ĉ=C/A, and time

has been rescaled to At. Notice the close similarity to the Lorenz equations, particularly if we

replace our z with z − 1 [7]:

ẋ = σ(y − x), ẏ = ρx − y − xz, ż = −βz + xy. (2.5)

It is instructive to study the system in the absence of a background wind, x∗=0. [7] presents the

theory of stability analysis and bifurcations that is used below. Loosely speaking, a bifurcation

is a point in parameter space where a system is “structurally unstable,” or small changes in the

parameters lead to qualitatively different behavior. It frequently occurs when the stability of fixed

points (the sign of their eigenvalues) changes. In what follows, B and C stand for the unitless B̂

and Ĉ. Let us consider the model’s behavior as we vary B. The system always has a fixed point

at (x, y, z)=(0, 0, 1) ≡ p0, where the eigenvalues of the Jacobian are

λ0 = −1, λ± − 1

2

(

1 + C ±
√

(C − 2)2 + 4B
)

. (2.6)

λ0 is always real and negative. λ± are always real since the discriminant is nonnegative, and λ+

is always negative. However, the system bifurcates at B=C, where λ− changes sign and becomes

positive for B > C. So p0 is stable for B < C but becomes a saddle with two stable and one

unstable eigenvectors for B > C. This fixed point corresponds to the fixed origin of the Lorenz

system (p0 is the origin of the (x, y, z − 1) system).

Solving for the other fixed points p±, we see that they are complex for B < C and become real
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at B=C:

p± = (±
√

B

C
− 1, ±C

B

√

B

C
− 1,

C

B
). (2.7)

x, y, and z are physical quantities and can only take on real values, so we cannot admit the complex

solutions. p+ represents a point with x > 0 and y > 0 (i.e., Te > Tw), which corresponds to an

El Niño event. The two new fixed points are stable, making B=C a pitchfork bifurcation. We see

the emergence of these fixed points just above B=C in Fig. 2.3. However, the system undergoes a

Hopf bifurcation at BH , and all the orbits become unstable. To see this, note that the eigenvalue

equation for the Jacobian at either fixed point p± is

λ3 + λ2(2 + C) + λ(C +
B

C
) + 2(B − C) = 0. (2.8)

It can be shown that the λ’s are complex, with Re(λ) < 0 for B < BH and Re(λ) > 0 for B > BH .

BH is the B for which the product of the coefficients of λ2 and λ equals the constant term, giving

BH = C2 C + 4

C − 2
. (2.9)

Fig. 2.2 presents a bifurcation diagram for the x∗=0 system. Throughout this study we use

physical parameter values A=1/year, physical C=1/4 month, ∆x=7500 km, and T ∗=12 K, which

are probably on the right order [23]. B is more troubling to estimate, but let us choose a value
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Figure 2.3: Appearance of new stable fixed point when B=3.1 in x∗=0 system.

that corresponds to physical B∆x &0.6 m2s−2K−1, which gives unitless B=127. Note that this

is in the unstable regime above BH=62.52. As suggested by the formal similarities to the Lorenz

equations, this system contains much of its behavior, including strange attractors and chaos after

the Hopf bifurcation. It is well known that in such systems trajectories oscillate between orbiting

p+ and p− with no set period, as does the El Niño. Fig. 2.4 demonstrates the chaotic nature of the

system, and Fig. 2.5 reveals the presence of a strange attractor. Note that the annual time scale

for oscillations in this model is set by the frictional damping A and not by an explicitly-imposed

seasonal cycle.

2.2 The Background Surface Wind x
∗

A major shortcoming of the above x∗=0 model is the complete symmetry between Tw and Te. The

real eastern Pacific tends to stay in a state matching p+ and moves to p− every several years in

an El Niño event. A way to break this symmetry that also agrees with empirical measurements is

to introduce a background wind x∗. The trade winds tend to blow westward, which corresponds

to x∗ < 0. With a nonzero x∗, the east-east symmetry cannot be restored by, say, redefining x

as x − x∗, since this will add new terms to the ẏ and ż equations. Unfortunately, an algebraic

treatment of the system also becomes enormously complex with x∗ 6= 0, since the fixed points are

solutions to a cumbersome cubic equation. We can still analyze the system numerically, which

reveals a very interesting bifurcation scheme.

First consider the case of x∗ small with respect to the natural speeds in the system, say x∗=-0.021
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(u∗=-0.01 m/s). Fig. 2.6 displays the numerically-computed bifurcation diagrams for u∗=-0.01 and

-0.45 m/s. The second value is used in [23] as the average westward trade winds, and gives a

dimensionless x∗ = 0.95 ≡ x0. Note that the fixed point at x=0 for small B does not stay near

x=0 as we increase B. Instead, one of the two fixed points formed at the bifurcation approaches

x=0 but always remains positive. This casts the bifurcation at B=C for x∗=0 in a different light.

Instead of having a stable fixed point become unstable and two stable fixed points emerge, we have

a stable fixed point (p−) stay stable and move below the x-axis, while a pair of stable and unstable

fixed points form. In what follows, we denote the fixed points as indicated in Fig. 2.6b.

We can comprehend this behavior as a codimension two bifurcation at (0, 0) in B, x∗ parameter

space. The cubic fixed-point equation is

(x − x∗)(x2 + 1) − B

C
x = 0. (2.10)

When x∗=0, we can factor out an x and solve the quadratic equation as before. However, a nonzero

x∗ leads to a constant term in the cubic equation, breaking the symmetric bifurcation diagram we

had above. The same thing happens in the pinned column example discussed in Section 7.1 of [7]

when Γ0 is turned on. In fact, the asymmetric bifurcation diagrams presented there match ours for

the x∗ 6= 0 case (except for stability type). Introducing x∗ not only breaks the symmetry between

east and west but also moves us away from the codimension two pitchfork to a codimension one

bifurcation.

For x∗=x0, the bifurcation where two new fixed points (p0 and p+) appear was numerically

found to occur at B=10.635. However, all three eigenvalues of p− remain stable for this B, and

will stay so until two of them develop positive real parts at B ∼ 101. As before, p+ is initially

stable, but two of its eigenvalues become unstable at B ∼ 36. p0, on the other hand, is a saddle

with two stable and one unstable eigenvalues from its creation at B = 10.635 throughout the range

investigated. The bifurcations of the x∗ 6= 0 flow are clearly richer than the x∗=0 case, but we

still have a point, B=101, after which all fixed points are saddles and we have chaotic behavior.

For the physical values mentioned above, B will generally be above 127, well within this unstable

range. We will nonetheless venture into the stable regime when we add a seasonal variation to T ∗

and thereby to B as well.
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Figure 2.6: Bifurcation diagrams for B = 127, (a) x∗ = −0.021, (b) x∗ = x0.

Besides stability analysis, another technique used to study chaos is Lyapunov exponents. One

important aspect of chaotic systems is sensitive dependence on initial conditions, that is, the separa-

tion between flows launched from nearby points grows exponentially with time. Lyapunov exponents

attempt to measure this growth, and are most easily defined for discrete maps. Let φt(x) be the

flow with initial condition x that satisfies ẋ = g(x). We define the map f(x) = x + ∆tg(x), which

gives f(x) = φ∆t(x) in the limit of small ∆t. fn(x) approximates φn∆t(x), as in Euler’s method

for solving differential equations. Suppose we write the difference between the flows launched at x0

and x0 + ǫ after n iterations as dn ≡ ǫeµn. We know that

dn = φn∆t(x0 + ǫ) − φn∆t(x0) ≈ f(x0 + ǫ) − f(x0) ≈ ǫ
df

dx

∣

∣

∣

∣

x0

. (2.11)

The Lyapunov exponents are the values which µ approaches for large n:

µ = lim
n→∞

1

n

n−1
∑

i=0

log

∣

∣

∣

∣

df(xi)

dx

∣

∣

∣

∣

(2.12)

A system with n variables has n Lyapunov exponents. A complete derivation is given in [11].

Exponential growth of initial differences leads to a positive µ. One Lyapunov exponent usually

corresponds to the system’s fastest-growing instability, so any positive µ is generally taken to

imply chaos. Fig. 2.7 shows the Lyapunov exponents for x∗ = 0, x0. The appearances of µ > 0

match the bifurcations to unstable fixed points discussed above, confirming the onset of chaos at

these values of B. Notice also that each system contains islands of stability past the transition to

chaos where no µ is positive.
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Figure 2.7: Lyapunov exponents for B=127, (a) x∗ = 0, (b) x∗ = x0. Appearance of positive
exponents indicates chaos and agrees with bifurcation analysis.

With the addition of x∗, the model now replicates the major features of El Niño. Figs. 2.4 and

2.5 show that the system does indeed tend to have a westward surface wind, which corresponds to

orbiting p− preferentially. El Niño events, characterized by motion near p+ and a positive x, occur

every so often with an irregular period. Examining the temperature difference y ∝ Te − Tw over

time also reveals anomalously warm eastern waters at the same time that the surface wind x blows

eastward. Fig. 2.8 portrays y with and without x∗.

2.3 Effects of Seasonal Cycle

To bring the model further in accordance with reality, let us introduce a seasonal cycle. It is a

well-known fact [22] that the onset of El Niño is partially phase-locked to the time of year, with

events much more likely to start when the trade winds are weak or eastward as opposed to their

westward average. We incorporate this effect by letting x∗ vary with time:

x∗ = x0(1 + xs sinωt), (2.13)

where xs is a dimensionless amplitude and ω ≡ 2π/year. As xs increases, the relative importance

of the constant offset x0 is diminished, and the symmetry between east and west present when

x∗=0 is somewhat restored. However, one can still make xs large enough to reverse the trade wind

direction (xs > 1) and obtain solutions qualitatively like the El Niño behavior seen above (the

system tending to orbit around p− with brief excursions to p+). Fig. 2.9 displays the effects of

both changing B and adding the seasonal cycle. In particular, notice that increasing B, which
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Figure 2.8: Temperature difference y for B=127, (a) x∗=0, (b) x∗=x0. Spikes in (b) coincide with
El Niño events in x, see Fig. 2.4.

controls the coupling between the temperature difference y and the winds x, makes the system

move more readily into an El Niño state (the effect is more pronounced for higher B, but I chose

191 since it behaves nicely for large xs). Furthermore, adding xs=3 causes trajectories to orbit

around each fixed point p± for a number of years before returning to the other one, eliminating El

Niño behavior. Incorporating both effects, however, leads to El Niño (asymmetric) motion.

Having found a physically reasonable set of parameters with the desired solutions, we can now

study the correlation between the seasonal cycle and El Niño onset. Fig. 2.11 shows the month

of event onset (defined by x becoming positive) during the year. In (a) there is no background

coupling to time of year, as we should expect. In agreement with observation, (b) indicates that

events tend to start when the trade winds are weak. Also note that the total number of events is

almost twice as large in the presence of the seasonal cycle.

Another way to represent the seasonal cycle is by varying the equilibrium ocean temperature

T ∗ rather than x∗. Recall that T ∗ appears in the rescaled system as -1 in Eq. 2.4c. In addition,

the coupling parameter B̂, which determines the stability of fixed points, is proportional to T ∗. We

therefore expect a small T ∗ to stabilize the system, that is, inhibit El Niño events by moving us
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Figure 2.9: Effects of seasonal cycle in x∗ and varying B. (a) B=127, xs=3, (b) B=191, xs=0, (c)
B=191, xs=3.
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Figure 2.10: Effects of seasonal cycle with x∗=x0, Ts=0.42 for (a) B=127, (b) B=191.

near the stable B < 101 regime. We introduce a time-varying T ∗ as follows:

T ∗ → T ∗(1 + Ts sinωt), ż = −xy − (z − 1 − Ts sin ωt), B̂ =
BT ∗(1 + Ts sinωt)

∆xA2
(2.14)

Ts is the dimensionless seasonal cycle amplitude and ω is the annual frequency used above. We

leave y and z rescaled only by the constant T ∗. T ∗ represents the average temperature difference

between the upper and deep (sub-thermocline) ocean, which we know is always positive (since cold

water sinks and the ocean is heated from above). We therefore cannot have Ts > 1. Let us choose

Ts=0.42 as a reasonable value for moderate seasonal variation.

Fig. 2.10a shows the effect of this Ts on our basic case B=127. The improved stability when

T ∗ and B are small seems to overcompensate for the instability when they are large: apparently

a large B becomes small again before the system “feels” it while orbiting p−. For Ts=0.42, the

minimum B is 74, well below the critical B=101 where p− becomes unstable. This counteracts

the effect of introducing a seasonal cycle in x∗, which helps restore the east-west symmetry and

promotes El Niño events. As before, increasing B moves the system back into El Niño behavior in
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Figure 2.11: Coupling of onset time to seasonal cycle for 2000-year integrations, B=191, x∗=x0.
(a)xs=0, Ts=0, (b) xs=3, Ts=0, (c) xs=0, Ts=0.42.

Fig. 2.10b. The coupling of event onset time with T ∗ is displayed in Fig. 2.11c and is somewhat

surprising. While there is a quite strong seasonal dependence of onset time, it is out of phase with

our intuitive expectations. We would suppose El Niño events occur when T ∗ is large and the system

is unstable, but it seems that they start before T ∗ reaches its maximum. This may be due to a

large lagtime (perhaps ∼1 year) in system response to T ∗, as was suggested for the reason why a

seasonal cycle with B=127 prevents El Niño from happening. Another possible explanation for the

phase difference is that T ∗ couples to z as well as to x. A varying T ∗ has little overall effect on the

total number of events. The run with time-dependent T ∗ had 355 events, slightly less than the 378

with no seasonal cycle and about half as many as the 612 observed with a varying x∗. The inclusion

of seasonal effects in a way that allows for El Niño behavior and gives an annual dependence of

event onset time further encourages us that our simple model captures some of the basic physical

mechanisms at work.
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2.4 Stochastic Forcing

An important test of our model’s relation to nature is to study the effects of “noise,” the unresolved

or excluded physical processes present in nature. One should have in mind here things such as

storms, cyclonic activity, and other “random” events that we have no hope of capturing in our

3-variable model. Since the atmosphere has much more stochastic variability than the ocean, we

introduce noise just into the surface wind x:

ẋ = B̂y − Ĉ(x − x∗) + xn. (2.15)

We can think of this as stochastically varying the value to which x is trying to equilibrate. At time

step i, xni is given by

xni = λxni−1 + riAN

√

(1 − λ2). (2.16)

ri is a random number uniformly distributed between -1 and 1, and AN measures the noise am-

plitude. λ sets the time scale for the duration of noise events. Since atmospheric disturbances

typically persist for a few weeks, let us choose λ=0.74, so that an initial disturbance will decay by

99% in 15 days if we set AN=0. λ=0 corresponds to white noise.

Application of stochastic forcing confirms the chaotic nature of the system. Fig. 2.12 shows

the difference between x for noiseless and noisy models with x∗=x0 and B=127. We see that

the solutions drastically diverge from each other even for an AN=1E-9 which is tiny compared to

Cx0=2.89. Although small noise can cause the model to follow a different trajectory, the system’s

qualitative El Niño-type behavior is very robust to it. As is seen in Fig. 2.13, even for a large AN of

10, the system oscillates aperiodically between a warm and cold state, preferentially staying cold.

The time-averaged magnitude of xn is 4.71 for AN = 10 and scales linearly with AN for the smaller

values mentioned above. The fact that increasing AN by several orders of magnitude delays by

a much smaller factor the time when the two models differ considerably stems from the system’s

intrinsic chaos.

The numerical work presented in this chapter was performed with C++ code using double-

precision (64-bit) numbers. Integration of ODEs was done with the fourth-order Runge-Kutta

method [2]. The time step was of order 3000-4000 secs, which is much smaller than the step sizes
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Figure 2.12: x1-x2 for x1 without, x2 with stochastic noise, B=127, x∗=x0. (a) AN=0.1, (b)
AN=1E-4, (c) AN=1E-9.
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Figure 2.13: x(t) for stochastic noise, B = 127, x∗=x0, AN=10. System qualitatively similar to
noiseless model.

that gave divergent behavior but still allowed for reasonable execution time. Mathematica v3.0 was

used for the numerical fixed point and stability analysis for x∗ 6= 0. The Lyapunov exponents were

calculated using the C package [17]. All random numbers in this thesis were generated with the

ran1 algorithm from [18].
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Chapter 3

Forced Shallow-Water Models

Having studied a simple, ad hoc ODE model for El Niño, we now proceed to one based on the

full-blown equations of geophysical fluid dynamics. We adopt the shallow-water model, a simple

and very common system used for thin, homogeneous fluids. Our principle interest is to see how

changing the winds and their coupling to the ocean relates to El Niño behavior. We start with

wind forcing controlled by a switching mechanism, which produces interannual oscillations between

a warm and cold eastern ocean and never equilibrates. Adding a background westward wind keeps

the ocean preferentially in the cold state. Unlike the real El Niño, this model is periodic. We

modify the ocean-atmosphere coupling to be continuous rather than a step function, and are able

to produce variability. A nonuniform westward wind prevents the system from becoming periodic,

without resorting to non-deterministic processes such as stochastic noise. In this regime, event

onset time is strongly coupled to the seasonal cycle, and, as in nature, strong events tend to be

followed by longer periods of calm.

3.1 The Shallow-Water Model

The shallow-water model (SWM) is used extensively in geophysics to study homogeneous (uniform

density) fluids whose depth is small compared to the length scale of lateral motions, such as the

Pacific ocean. In deriving this model from the primitive fluid dynamics equations, one assumes

hydrostatic balance (the pressure field balances gravity) and replaces pressure with height in the
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governing equations. This yields

Du

Dt
− fv + g′ηx =

τx

H
+ νh∇2u − νu (3.1a)

Dv

Dt
+ fu + g′ηy =

τy

H
+ νh∇2v − νv (3.1b)

Dη

Dt
+ H(ux + vy) = −κη. (3.1c)

Coordinate subscripts denote derivatives. x and y refer to the zonal (east-west) and meridional

(north-south) directions, and correspond to longitude and latitude coordinates on the Earth’s sur-

face. u and v are the ocean currents in the x and y directions, with positive values corresponding to

eastward and northward flows, respectively. η represents the perturbation of a fluid column’s height

from its mean value H. We linearize the η equation by assuming η/H ≪ 1, which may not be

justified in light of the magnitude of oscillations seen below. When applied to the ocean, a positive

η represents a downward displacement of the lower surface. For a single layer of homogeneous fluid,

g’ is simply gravitational acceleration g (9.8 m/s2). However, the SWM can be easily adapted to

the case of two homogeneous layers of densities ρ1 and ρ2 by introducing the reduced gravity

g′ ≡ ρ2 − ρ1

ρ1

g. (3.2)

τx,y are forcings on the ocean surface, νh is the coefficient of viscous dissipation, ν is the coefficient of

Rayleigh friction, and κ is the coefficient of Newtonian damping (arising from Newtonian cooling).

We treat the Pacific as a warm shallow layer on top of a cold deep abyss with the thermocline

separating them. u and v refer to the currents in the upper layer, and η to the thermocline

displacement. Table 3.1 lists the values of physical parameters used in this study, and Fig. 3.1

depicts the coordinate system for the SWM.

f = 2Ω sin y is the Coriolis parameter and incorporates the Earth’s rotation: all quanti-

ties are measured with respect to the Earth’s surface, which is a rotating, non-inertial frame

(Ω=2π(1/day+1/year)=2π/sidereal day). For problems of small meridional extent compared to

the Earth’s radius, it is customary to expand f in the longitude y:

f = 2Ω(sin y0 + y cos y0 + . . .) ≈ f0 + βy. (3.3)
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Figure 3.1: Coordinate scheme for two-layer SWM.

parameter value parameter value

Lx 90o= 10,000 km g’ 0.02 m/s2

Ly 80o= 4550 km H 100 m
dx 1oor 2o Ω 7.29E-5 1/s
dy 1oor 2o νh 1.5E4 m2/s
dt 1 hour ν = κ 5E-9 1/s

Table 3.1: Values of physical parameters for the SWM.

This is referred to as the “β-plane” approximation. f is positive (negative) in the northern (south-

ern) hemisphere, but β is always positive. D/Dt is the advective or material derivative (following

a fluid parcel), which in fixed spatial coordinates is

Du

Dt
=

∂u

∂t
+ u · ∇u (3.4)

(u is the velocity vector). When considering large-scale flows, we are justified in linearizing the

equations by neglecting the quadratic advective acceleration terms. Thus, we only keep the linear

∂u/∂t term in the material derivative. For a detailed discussion of these issues and derivation of

the SWM, see [5].

We numerically simulate the SWM with C++ code adapted from a FORTRAN program written

by Ron Pacanowski [14]. The code is further discussed and used for the numerical work in [16].

While the model presented above holds on a flat 2-dimensional surface, our simulation incorporates

the curvature terms of the full spherical geometry (given in [5], p. 34). In addition, it does not

use the β-plane approximation but retains the complete Coriolis parameter f . Derivatives are
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computed via a centered finite-difference equation:

∂f

∂x
=

f
(

x + h
2

)

− f
(

x − h
2

)

h
. (3.5)

For our ocean, we use a rectangular domain of size 0≤ x ≤ Lx, −Ly ≤ y ≤ Ly. The spatial

grid sizes dx, dy and time step dt are chosen to accurately capture the Rossby and Kelvin wave

dynamics that are essential to El Niño. We imagine the ocean as bounded by solid walls (the

coasts), so the normal velocity components vanish at the edges. However, to compute a function’s

spatial derivatives at a grid point, we need to know its value at neighboring points. We need up

to second derivatives in our system (from ∇2u for viscous damping), which in a centered-difference

scheme requires the value at a grid point and its neighbor on each side. Therefore, we ring the

ocean with a box where all functions always equal 0, and within that a box where only the normal

velocities vanish.

In integrating the SWM numerically, one must choose between a scheme that conserves energy

or potential enstrophy (integral of squared vorticity,
∫

(vx − uy)
2dV ). A detailed discussion of this

issue, as well as two numerical algorithms which differ only in their conservation properties, is given

in [20]. We adopt the potential enstrophy-conserving scheme presented there, since this method

better replicates the wave dynamics expected from theoretical considerations. In particular, the

potential enstrophy-conserving scheme we use captures the stability of large-scale Rossby waves

(defined below), while a similar energy-conserving scheme does not [19]. For time derivatives, this

method uses the leapfrog (centered-difference) scheme with a Robert time filter [8]. This low-pass

filter calculates the time-average f of some function f(t) via

f(t) = f(t) + γ [f(t + ∆t) − 2f(t) + f(t − ∆t)[ . (3.6)

The filter severely dampens high-frequency (period ≤ 2∆t) waves, and its effect drops off for lower-

frequency components. We choose γ = 0.01 throughout this study.
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3.2 Wave Dynamics

The ocean dynamics fundamental to El Niño are Rossby and Kelvin waves. Consider the unforced

SWM with no friction or damping (νh=ν=κ=0). Rossby waves result from the variation of f with

latitude y, and are best understood by using the β-plane approximation. A detailed derivation is

given in section 6.4 of [5]. The upshot is periodic solutions for the surface displacement of the form

η ∝ cos(lx + my + ωt) with the dispersion relation

ω =
−βR2l

1 + R2(l2 + m2)
, R ≡

√
gH

f0

. (3.7)

R is dubbed the Rossby radius of deformation, and l and m are the zonal and meridional wavenum-

bers. Solving for the zonal phase velocity gives

cx ≡ ω

l
=

−βR2

1 + R2(l2 + m2)
. (3.8)

cx is always negative, implying Rossby waves can only propagate westward. However, the meridional

phase velocity cy ≡ ω/m can have either sign.

Unlike Rossby waves, which rely on the Earth’s rotation, Kelvin waves only need a lateral

boundary to propagate. Along a wall in the y-direction at x=0, the zonal velocity u=0. Kelvin

realized that solutions exist for which u=0 everywhere. Following section 6.2 of [5], we can write a

wave equation for v:

vtt = c2vyy, c ≡
√

g′H. (3.9)

c is the wave’s phase velocity. The most general solution for η in the SWM is

η = η1(y + ct)e−x/r + η2(y − ct)ex/r, (3.10)

where ηi is an arbitrary function. Consider a wave travelling in the northern hemisphere (f > 0)

to the east of a coast (x > 0). R is positive, so the η2 term is unbounded for large x and must be

rejected. We see that the amplitude of η1 decays away from the wall, thereby trapping the wave

along a coastline. The wave also propagates southward. We can perform the same analysis for a

coastline with arbitrary orientation (and set the normal velocity to 0), so Kelvin waves travel with
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the coast to the right in the northern hemisphere and the left in the southern.

Rossby and Kelvin waves appear in altered form near the equator (see Chap. 19 of [5]). Although

there are no coastlines, the β-plane approximation near the equator (f ≈ βy + . . .) allows for

solutions with v = 0 everywhere. The equator thus acts as an effective meridional wall trapping

these so-called equatorial Kelvin waves which propagate only to the east at the speed c defined

above. Moreover, solutions on the equatorial β-plane exist that strongly resemble Rossby waves.

For long wavelengths (small l), the dispersion relation for these waves is

cx ≈
−βR2

eq

2n + 1
=

c

2n + 1
, n ≥ 1. (3.11)

Req ≡
√

c/β measures the distance from the equator over which equatorial dynamics dominate

midlatitude dynamics. It is now clear that Kelvin waves (phase speed c) travel faster than Rossby

waves (phase speed at most c/5).

As a first test of our numerical code, let us simulate the evolution of a surface depression with

no forcing. The initial ocean has no currents and a surface displacement

η = exp
[

−
(

x2 + y2
)

/(500km)2
[

m. (3.12)

Fig. 3.2 clearly shows the bulge separating into a fast, east-moving equatorial Kelvin wave and

a slower, double-lobed west-moving Rossby wave. This generation of waves is not just caused by

disturbances in η but is a quite generic response to wind stress and other perturbations. Once the

Kelvin wave reaches the eastern coast, it splits into two Kelvin waves. The simulation agrees with

our theoretical expectations of how Kelvin waves travel along a coast in each hemisphere, and also

confirms that the equator can be thought of as a meridional boundary.

3.3 A Switched Forcing Mechanism (SFM)

As was discussed in Chap. 1, El Niño relies fundamentally on positive feedback within the coupled

ocean-atmosphere system. Therefore, we must somehow incorporate the atmosphere if we are to

study El Niño. Although called the SWM, this system is frequently applied to the atmosphere as

well as the ocean. One straightforward method is to simulate both an ocean and atmosphere with
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Figure 3.2: Separation of surface depression into Kelvin and Rossby waves in the SWM.

separate SWMs and treat each as an external forcing on the other. In particular, the atmospheric

winds act as the body forces τx,y which drive ocean currents, and the ocean SST heats the at-

mosphere (and acts as a source for atmospheric η). This approach was studied in [16], where it was

shown that instabilities grow near the equator but not away from it or on a non-rotating Earth.

However, [4] points out that the instabilities grow without bound, and that a separate scheme which

leads to decay cannot be combined with the one that led to growth. The simulations I performed

bear out that equatorial instabilities become arbitrarily large. This behavior persists even if we in-

clude the nonlinear advection terms in the primitive equations. While this scheme establishes that

the coupled ocean-atmosphere system produces growing instabilities on the equator, it is not useful

for our purposes of studying long-term El Niño properties, such as the time between oscillations

and relation to the seasonal cycle. We therefore consider a parametrized atmosphere, appearing

only as explicit forcings in u and v.

We use the fluid depth η both as a diagnostic of the ocean’s state and to control coupling to

the atmosphere. A negative η indicates the thermocline is closer to the surface. The SST roughly
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matches the thermocline depth, with a shallow thermocline producing cold surface temperatures.

Following [1], we parametrize the atmosphere via the forcings τx,y reflecting the stress on the ocean

surface due to winds. This model provides a simple way to produce interannual oscillations, and

will be modified to produce irregular behavior below. We decompose the forcing into two parts, a

seasonal component τs and a Walker circulation component τw. The latter stems from the increase

in westward equatorial winds when the eastern Pacific is cool (η small), as was the basis for the

model studied in Chap. 2. The wind stresses are given by

τs = τ0sX(x)Y (y) cos ωt (3.13)

τw = τ0wX(x)Y (y), where (3.14)

X(x) = cos

[

2π

H

(

x − Lx

2

)[

,
Lx

4
< x <

3Lx

4
, (3.15)

Y (y) =
1

2

(

1 + cos
2πy

λ

)

, |y| <
λ

2
, (3.16)

X = Y = 0 otherwise. (3.17)

ω = 2π/year, τ0s=1.15E-5 (m/s)2, τ0w=-5.0E-5 (m/s)2, and λ=3000 km. Physically, the total

depth h ≡ H + η measures the distance from the ocean’s surface to the thermocline. he is the

thermocline depth at the eastern boundary, measured along the equator two x-grid points from the

boundary. The wind stress depends on he through a simple switching mechanism:

τx =











τb + τs + τw, he < hc,

τb + τs, he ≥ hc

(3.18)

We call this the switched forcing model, or the SFM.

τb represents a background wind stress and is 0 for now. Fig. 3.3 shows a contour plot of the

wind stress over our model ocean. Note that the only stress is in the zonal direction. Meridional

winds are generally deemed unimportant in equatorial ocean dynamics, namely because they do

not generate Rossby or Kelvin waves. hc switches the Walker winds on and off, and is computed

from the he to which the ocean relaxes in the absence of τs. Under these conditions, the ocean

settles into a steady state known as Sverdrup balance [15]. Consider the SWM with steady flow,

or ut = vt = ηt = 0. For our values of νh, ν, and κ, the friction and damping terms are small
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Figure 3.3: Contour plot of wind stress X(x)Y (y).

compared to the Coriolis term and are for the moment neglected. We can now differentiate and

combine Eqs. 3.1a and 3.1b to solve for v:

v =
τy
x − τx

y

βH
. (3.19)

y=0 along the equator, so the right-hand side is 0 for τw given in Eq. 3.13. Eq. 3.1a and the

boundary condition u=0 at the walls implies that u=0 on the equator. Eq. 3.1c then yields

ηx =
τx

g′H
. (3.20)

When a constant wind stress is applied, the ocean relaxes back to a state of no zonal flow once

the transients die out. A constant pressure gradient (recall that η measures pressure in hydrostatic

balance) matches the wind stress but drives no zonal current.

We define the value to which he settles when the ocean is forced by a constant stress τw to

be hw. We determine its numerical value by running the model until he appears to be constant.

Fig. 3.4a shows he equilibrating in a 6-year integration; he continued its steady behavior when the

model was run longer. We therefore let hw = he(10 years). The westward wind moves surface water

to the west, generating east-moving Kelvin waves with η < 0 and west-moving Rossby waves with

η > 0 (similar to Fig. 3.2). This leads to the minimum in he near 140 days. The waves reflect back

toward the center from the coasts (the model has solid walls) and reach each other. As the winds
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Figure 3.4: he for (a) Walker wind stress τx = τw, (b) seasonal wind stress τx = τs.

τb, (m/s)2 hw, m ∆h, m ha, m hc, m hb, m

0 73.4 17.9 82.1 86.7 91.3
τb1=-3E-6 66.1 17.9 82.1 83.0 84.0
τb2=-6E-6 58.8 17.9 82.1 79.4 76.7

Table 3.2: Values of switching parameters for various background westward winds τb.

generate new waves, the ocean eventually equilibrates to Sverdrup balance. McCreary showed that

a necessary and sufficient condition for the model with seasonal forcing as in Eq. 3.18 to oscillate is

H − ∆h = ha < hc < hb = hw + ∆h, (3.21)

where ∆h is the amplitude of he oscillations due solely to τs [1]. As we see in Fig. 3.4b, the

transients decay in the seasonally forced system within one year, after which time the system

behaves periodically. We follow McCreary and let hc=(hw + H)/2, so that the inequality 3.21 is

satisfied. Table 3.2 contains the numerical values of the relevant parameters for different choices of

τb.

Fig. 3.5a shows the SFM oscillates between two equilibria, based on whether he is less than or

greater than hc. We have seen that the model equilibrates to Sverdrup balance when forced by τw

alone; it is also clear that in the state of no forcing friction will make the ocean settle to a rest

state. The seasonal forcing τs prevents the ocean from ever reaching either of these two states. For

a detailed discussion, see [1]. A principal feature of the SFM which differs from the real El Niño is

that it behaves periodically after the first time the switch is thrown. We see that this forcing scheme

reproduces some of the hallmarks of El Niño, namely oscillations between a warm and cold phase
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Figure 3.5: Evolution of SFM, τb = (a) 0, (b)τb1 , (c)τb2 . In each plot, hc is the one for the
appropriate τb from table 3.2. Model with τb1 and hc=86.7 m behaves like (c).
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at an interannual period without ever equilibrating, but fails to capture the system’s irregularity

or cold-warm asymmetry.

A physical-motivated way to recover the observed asymmetry between cold and warm phases is

to include a background westward trade wind, as we did with x∗ in Chap. 2. We do this by adding

a constant τb to every point within 10o of the equator. We then determine hc as before, first by

running the model with just τw and τb until Sverdrup balance is established. The resulting time

series for he is qualitatively the same as for τb=0, except that the minimum and equilibrium values

are lower. When run with the seasonal forcing τs and τb, he is sinusoidal after some transients in

the first year, as before. The amplitude of oscillation is the same, but the zero-point is shifted

downward. With τb1 , the values in table 3.2 show the inequality 3.21 is still satisfied, and that hc

is roughly in the middle of ha and hb. However, we see in Fig. 3.5b that the cold phases are now

longer than the warm ones. Although the lower hc allows a smaller he to throw the switch, the

eastern thermocline elevation due to τb overcompensates. The model still behaves periodically but

has more pronounced transients than the τb=0 case does (e.g., the first warm peak is lower than the

later ones). In addition, the oscillation inequality is not met if we use the hc we found for τb = 0.

Another way to prevent oscillation is to use a stronger τb so that the forcing never switches, such

as τb2=6E-6 (m/s)2 (see Fig. 3.5c).

3.4 A More Realistic Forcing Function (CTM)

Although simple to implement and understand, the SFM discussed above has some unphysical

aspects. First, the winds change discontinuously when he = hc. A more specific drawback is that

the forcing tends to leave physical bounds, and can produce an effect called outcropping of the

layer. A more serious drawback to El Niño studies is that it is periodic, unlike the irregular real

system. For these reasons, we also consider the smooth forcing

τx = D(η̂)τw + τs + τb, η̂ ≡ −η

H
, (3.22)
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where

D(η̂) ≡













b+ + 1
a+

(

tanh
[

κa+

b+
(η̂ − η+)

[

− 1
)

, η̂ > η+,

κη̂, η− ≤ η̂ ≤ η+,

−b− − 1
a
−

(

tanh
[

κa
−

b
−

(η̂ − η−)
[

− 1
)

, η̂ < η−

. (3.23)

η is the average η within 6o longitude from the eastern wall and 3o latitude from the equator,

weighted by a grid point’s area (we are on a spherical geometry). For D(η̂) to be continuous, we

must have a± > 0 and

η+ =
b+

κ
(1 − 1

a+

), η− =
−b−
κ

(1 − 1

a−
). (3.24)

a± measures the curvature of D, b± are the values D approaches away from η̂=0, and κ is the slope

of D at 0. D(η̂) was presented as a reasonable forcing function in [3], and the form Eq. 3.22 was

suggested in a study of basin size effects on El Niño [12]. This function turns the Walker circulation

on and off gradually. We define η̂ with a negative sign so that D(η̂) mimics McCreary’s switching

and turns on for an elevated thermocline (η < 0). A nonzero b− causes the Walker cell to run in

reverse for η̂ > 0. We call this system the continuous tanh model, or CTM. It is possible to center

D on hc rather than H, but we do not investigate that approach here.

Since a full exploration of reasonable parameters for D is computationally prohibitive, we follow

[3] and set a+=3, a−=1, b+=1, and b−=0.5 and vary κ. Fig. 3.6 presents D for these values and

κ=1.75, and Fig. 3.7 plots the model’s behavior for various κ. Three generic behaviors occur,

depending on κ. For κ=1.5 or smaller, the system behaves like a driven, slightly damped oscillator.

There are some minor transients that quickly give way to an annually-periodic solution. κ=2 leads

to a large separation between the warm and cold states, with the system switching every few years

between the two. After a longer period of transient behavior, the system becomes periodic. This

approximates the behavior of the SFM’s step function coupling of the Walker stress, which is D(η̂)

(centered on hc) in the limit of infinite κ and b−=0. κ=1.75 and 1.9 seem to be a happy medium

between these two regimes, with neither the seasonal nor Walker forcing dominant.

We can recapture the warm-cold asymmetry and produce more irregularity with a background

wind τb as above. Fig. 3.8a displays he over time for κ=1.9 and τb2 , twice the background wind

used in the switched model above. One should think of El Niño as peaks with anomalously deep

thermoclines rather than simply as those years where the thermocline is below the mean depth
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Figure 3.6: Coupling function D(η̂) for κ=1.75.

H=100 m. Although the system acts more or less periodically (some residual transient behavior

remains), the period is interannual (about 6 years) and contains a nontrivial structure (one sharp

El Niño peak, extrema at different he values). This model will be useful for studying the effects

of westerly wind events in Chap. 4. In addition, the system can be made irregular by dropping τb

off gradually. We do this by setting τb to τb2 within 8o of the equator, τb1(=τb2/2) 10o from the

equator, and 0 elsewhere. Fig. 3.8b was produced using this nonuniform background wind. This

model was run for 1000 years and never settled into a clearly periodic behavior, indicating that

the variability is not simply transient. There are some clear patterns in the plotted signal, but the

changing heights of analogous peaks and the lull near year 925 attest to the aperiodicity.

Analyzing this run reveals further agreement with basic El Niño properties. We define an El

Niño to be a maximum in he > 110 m that occurs at least 1 year after another such maximum (we

count 2-peaked events as one event). This leads to 248 events in 1000 years, which is reasonable for

the real system. We define event time as the time of maximum he. Fig. 3.9a is a histogram of time

between successive events, showing they occur interannually but not at a set interval. As in the real

system, Fig. 3.9b shows a trend for stronger El Niños to be followed by longer stretches of a cold

eastern Pacific. In addition, Fig. 3.10 reveals a strong coupling of event onset to the time of year

when the seasonal trades τs are their most westerly (cos(ω0.5)=-1). This agrees both with nature

and the seasonal x∗ from Chap. 2. The deterministic ODE system presented there recovers certain

broad aspects of the El Niño through chaos, but grossly simplifies the ocean to two grid points. The

nonuniform wind forcing discussed here treats the full spatial structure of the ocean through the

PDE shallow-water model, and still recovers El Niño behavior without using stochasticity. Finding
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Figure 3.7: he for CTM, τb=0, κ = (a)1.5, (b)1.75, (c) 1.9, (d) 2.0.

the right wind structure was crucial in generating interannual and irregular motion, with the ocean

dynamics being kept the same throughout this chapter.
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Figure 3.8: he for CTM, κ=1.9. (a) uniform τb2 produces interannual but periodic behavior. (b)
nonuniform τb (τb2 , dropping to τb1 , then 0) produces some variability even after 900 years.
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Figure 3.9: (a) Histogram of time between El Niño events. (b) Time before next event vs. he of
peak, with best-fit line showing increased lag after strong events.
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Chapter 4

Noise and Westerly Wind Events

This chapter explores the effects of stochastic wind noise and westerly wind events on the models

developed in Chap. 3. The SFM is quite sensitive to noise that moves he across hc, and even weak

noise can push solutions permanently out of phase with the noiseless one. Noise can also have a

large effect on the CTM, but it does not have the same critical dependence on he of the SFM.

Westerly wind events can generate significant transients in the CTM for several years, after which

the ocean may return to its unperturbed, periodic behavior or be permanently different. This is

consistent with treating he as a damped, driven oscillator, with the wind events acting as impulsive

forces that generate transients. In addition, wind events prove insufficient to immediately trigger

an El Niño in the CTM, and have only a small immediate impact on the ocean. The SFM, on the

other hand, is very quickly thrown into an El Niño state by wind events, demonstrating that the

role of these events in El Niño onset may depend strongly on how sensitive the Walker circulation

is to the eastern thermocline.

4.1 Stochastic Noise in the Wind Field

A major source of stochasticity in the ocean-atmosphere system is the ever-present, local wind

fluctuations that we have no hope of resolving with our model. We add such wind noise via the
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Figure 4.1: Contour plot of noise, showing easward decline and sine-induced spatial structure.

following formula:

N(x, y, t) = A(x, y, t) (1 + |sin (kxx)|) (1 + |sin (kyy)|) b

(

1 − x

xe

)

, (4.1)

A(x, y, ti+1) = λA(x, y, ti) + r(x, y, ti)AN

√

1 − λ2. (4.2)

We compute N once a day and add it to the calculated τx at every point within 10o latitude of

the equator. We choose this form so that the noise is non-white both over time and space. The

sine terms provide some structure over scales typical of weather events, with kx,y corresponding

to wavelengths of 20o. The linear part reflects the fact that storms tend to be stronger in the

western Pacific. xe is the longitude of the eastern ocean boundary, making the linear part b at the

western end (x=0) and 0 at the eastern (x=xe). The value of λ determines how quickly N(x, y)

decorrelates from its prior values, and matches the noise scheme from Chap. 2. λ=0 corresponds

to white noise over time at a single grid point. As before, let us choose λ so that a disturbance

will decay by 99% in 15 days, giving λ=0.74. r(x, y, ti) is a random number uniformly distributed

between -1 and 1, and is different for each grid point. Fig. 4.1 displays a contour plot of the

wind noise on some day. For convenience we do not include any noise in the meridional winds τy,

because most studies indicate this noise to be smaller in amplitude and unimportant to equatorial

ocean dynamics. For example, [10] found the optimal wind noise for promoting variance growth (a

measure of how divergent two solutions are) in a coupled ocean-atmosphere model used to predict

El Niño has very small meridional components.

We set an amplitude AN for the wind noise by comparison with the seasonal wind stress. It is
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generally accepted that the noise amplitude is roughly the same strength as the seasonal component

and can be stronger at some times. When t=0 (i.e., cos(ωt)=1 in Eq. 3.13), the average τs over

the region where it is nonzero is 3.4 in arbitrary units. Fixing b=0.2, a value of AN=0.001 gives an

average noise stress amplitude of 3.7 over the region where it is applied. Running the τb=0 SFM

with noise of this strength produces a different solution from the unperturbed case, as is shown

in Fig. 4.2. Notice that he departs very little from its unperturbed value with this wind noise,

indicating just how sensitive the model is to any crossing of he = hc: this prematurely switches the

Walker forcing. This is much more likely to happen when he is at an annual maximum, which is

what we observe. As a result, onset of El Niño, or a warm ocean, is quite strongly coupled to the

seasonal cycle. Since the warm phase is not affected, we have recovered a warm-cold asymmetry.

The fact that noise shortens the cold intervals most likely depends on whether the warm or cold

annual peaks are closer to hc; it is entirely conceivable that the warm phase would be contracted

in a model with slightly different parameters, a physical reason to adopt a larger hc, or a westward

background wind τb. Fig. 4.4 displays the area-weighted average absolute value of the difference

between η of the noiseless (a) and noisy (d) models within 10o of the equator over the entire zonal

extent, normalized by the total fluid depth H (referred to as AED). From this, we see that the

ocean on a large scale is in a different state when he is in a warm rather than cold state.

Fig. 4.2 also reveals that both the western and eastern noise are important to switching the

ocean state. N is calculated as above but only applied in the eastern half of the ocean for (b) and

the western half for (c). Both of these schemes are capable of switching the ocean, sometimes in

different years. Noise in the west affects the eastern thermocline by generating east-moving Kelvin

waves. When noise is applied everywhere as in (d), there are times when both the western and

eastern noise are necessary to change state. An ocean that is switched by noise is permanently out

of phase with an unperturbed one, as Fig. 4.3 shows. Here, noise is applied for the first 17 years

and then turned off. Note, however, that once the noise is removed, the model behaves exactly as

the unperturbed one does, just shifted in time.

Wind noise affects the CTM differently than it does the SFM. Fig. 4.5a shows how the CTM

behaves with AN=0.004 noise applied over the whole ocean, and (b) depicts the AED between this

run and one without noise. We set κ=1.9 and τb=0, the same settings that were used for Fig. 3.7c.

The model was first run for 15 years to reduce transient behavior, noise was applied for 25 years,
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Figure 4.2: τb=0 SFM with noise strength AN=0.001 applied (a) nowhere, (b) the eastern ocean,
(c) the western ocean, and (d) everywhere.
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Figure 4.3: τb=0 SFM with AN=0.001 noise applied to whole ocean for first 17 years.
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Figure 4.5: Continuous coupling for AN=4E-3. (a) he for model with noise, (b) AED.

and was then turned off for the next 15 years. Although the value of AN used above (0.001) also

significantly perturbs the model, we choose 0.004 to show that the CTM is more resistant to noise.

While noise throws the SFM into a different state as soon as he approaches hc, the stronger noise

used for the CTM run took 18 years do to this even though he was moving between warm and cold

phases. The response to noise indicates that the CTM does not share the sensitive dependence on

he present in the SFM, which one would not expect in a large, massive system like the ocean. Both

of the SWM-based models contrast sharply with the chaotic model of Chap. 2, where miniscule

noise very quickly drives solutions apart. Moreover, the perturbed ocean does not seem to merely

be a shifted version of the unperturbed one after we turn the noise off. The qualitative features

(aperiodicity, interannual oscillations) of the two time series for he nonetheless agree.
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4.2 Effects of Westerly Wind Events

A topic of recent interest in El Niño studies has been the connection with westerly wind events

(WWEs). The term refers to short-term (∼10 days) atmospheric events over the western or central

Pacific with eastward-blowing (westerly) winds that are significantly stronger than typical winds.

Overall properties of the WWEs for the 1986-1995 period are presented in [9]. Harrison and Vecchi

classify WWEs into eight groups, based on the location of the maximum wind anomaly from

a climatological background. They produce composite events by averaging the winds of all the

events in a given category. The distance these events translate during their lives is generally much

smaller than their spatial extent, and they tend to move in the zonal direction. They also find that

the zonal structure of WWEs are well-fitted by the gaussian

u(x, y, t) = u0 exp

[

−
(

x − x0 + cxt

Lx

)2

−
(

y − y0 + cyt

Ly

)2

−
(

t

T

)2
[

. (4.3)

x0 and y0 are the coordinates of the event center, which moves with speed (cx, cy). We use this

formula for the wind field strength instead of composite data sets. The only major difference from

the measured wind field is the lack of any meridional winds. But, as discussed above, they are not

considered important in equatorial ocean dynamics.

As is typical of the wind stresses we have explored, WWEs generate Rossby and Kelvin waves

analogous to the ones seen in Fig. 3.2. The westerly wind pushes warm surface water eastward,

thereby depressing the eastern thermocline. The east-moving Kelvin wave therefore consists of a

positive surface displacement, while the west-moving Rossby waves have η < 0. Since the eastern

thermocline controls the wind stress on the ocean, WWEs can interact with the El Niño cycle. The

observed connection of WWEs with El Niño is most strongly seen in the Southern Oscillation Index

(SOI), usually taken as the pressure difference between Tahiti and Darwin, Australia. Harrison

and Vecchi found strong lagged correlations between WWEs of a particular type and the SOI. The

category with the statistically most significant correlation was the central (C) events at no lag, so

we choose to investigate it. In particular, C events tend to occur during El Niño events, which

correspond to a negative SOI.

C events are centered on the equator at 170o E longitude, and will be placed near the western
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Figure 4.6: (a) AED between windless models with and without a C event. (b) he with C event.

edge of our model. Since the real Pacific is larger than the ocean we have been using, we only

apply the event within Lx/2 and Ly of the center. The best-fit parameter values for this type are

u0=6.4 m/s, Lx=16.2o, Ly=5.4o, T=3 days, and cx=cy=0. We apply the event for 12 days, twice

the temporal e-folding time before and after t=0. To apply the event, we add the wind calculated

via Eq. 4.3 to what the wind stress would otherwise be. We need to convert atmospheric wind

speeds to ocean forcings τx. A value of γ=5E-5/s is calculated in [16] using basic thermodynamic

arguments and is adopted here. This leads to an peak event stress of 3E-4 (m/s)2, which is much

higher than τ0s
and τ0w

. Fig. 4.6a displays the AED between a steady, unforced ocean and one

which has experienced a C event on day 20. This shows that an event can have a minor effect on

the ocean, but decays to an insignificant level after 2 years. We can also see from the plot of he

in Fig. 4.6b that the east-moving Kelvin wave possesses a positive η, and allows us to estimate

the lag between event onset and when the wave reaches the eastern boundary. The maximum he

occurs at 91 days, or 65 days (91-20+6) after the maximum winds of the event. This is in excellent

agreement with the Kelvin wave theory worked out above: to travel from 17o to 86o at speed

c =
√

g′H = 1.41 m/s takes 63.5 days.

We now apply C events to a CTM ocean with τb=τb2 and κ=1.9, corresponding to Fig. 3.8a. In

broad terms, we see that he acts like a damped, driven oscillator: the event can be thought of as an

impulsive forcing, which generates transients. Fig. 4.7 displays four oceans with a C event applied

at varying times. Runs with events applied at other times agree with the following discussion. In

general, the event does not produce a significant change in the ocean state for at least a year after

it happens. he evolves in the short term almost exactly as it otherwise would; in particular, WWEs
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do not appear to trigger an El Niño event. We see this whether the event reaches the eastern

boundary during a crest, a trough, or somewhere in between. However, events can produce large

deviations in ocean behavior on the scale of several years, and even seem able to move the ocean

into a permanently different regime. The first way is by making the interannual, periodic cycle

more regular. In panel (c), for instance, the warm phases (large he) are all very similar after the

event, while in the unperturbed ocean we see two distinct types of warm phases. Perhaps there

is more than one stable periodic solution for he, and the event throws the model from one into

another. The other possible permanent difference is a temporal phase shift. Panel (g) shows the

ocean evolving basically as the unperturbed ocean does, except shifted in time.

The failure of WWEs to push the CTM ocean into an El Niño state stands in stark contrast to

their effect on the SFM. We have already seen how sensitive the switched system is to the precise

value of he: once it crosses hc, the ocean changes state. Any spike large enough to do this (which

for a model such as that in Fig. 3.5 almost all of them are) immediately prompts an El Niño. Both

of these models contain identical ocean dynamics and differ only in the way the Walker wind stress

couples to the eastern thermocline. The winds in the SFM change abruptly based solely on the

value of he, while the CTM winds change gradually with the average η over a 6o by 6o patch.

One therefore needs a stronger, more coherent disturbance of the eastern ocean in the CTM to

drastically alter the ocean and trigger an El Niño. Recent studies that show wind events are able

to cause El Niño utilize more sophisticated models than the ones used here; for instance, they may

simulate a complete atmosphere governed by the SWM rather than simply a parametrized wind

field, or the ocean may include active thermodynamics. As was mentioned in Chap. 3, running

an ocean and atmosphere alongside each other produces disturbances that grow without bound in

the course of several weeks. Perhaps models which capture more details of the ocean-atmosphere

system contain small-scale positive feedback that allows little perturbations, such as those caused

by a wind event, to grow into a full-blown El Niño.

We should be skeptical as to how well our westerly wind events replicate the effects of real

ones. First, the spikes of tens of meters in he seem rather large for anything short of an extreme

occurrence. This may be due to the value we use for the coupling parameter γ being out of

proportion with our choice of friction and wind stress constants. It is unlikely that using a larger

ocean will significantly reduce the spike height, since Kelvin and Rossby do not dissipate much. If
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our simulated wind events are much stronger than their counterparts in nature, this should further

convince us that these events do not have a major immediate effect on the CTM ocean (e.g., they

cannot push the ocean into an El Niño).
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Figure 4.7: he and AED for C wind event applied at different times to CTM with κ=1.9, τb=τb2 .
(a,b) event causes weak disturbance that dies, (c,d) model becomes more regular (difference between
the two warm phases in unperturbed model disappears), (e,f) large disturbance occurs several years
after event, (g,h) ocean approaches unperturbed behavior but is phase-shifted.
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Chapter 5

Conclusions and Future Prospects

This thesis has explored a series of El Niño models that contain many basic aspects of the real

system, namely interannual, irregular oscillations and phase-locking to the seasonal cycle. We have

seen that simple, deterministic models reproduce these El Niño features, lending credence to the

notion that El Niño arises from large-scale, basic physics of the tropical ocean-atmosphere system.

We first considered a chaotic ODE model, and then proceeded to periodic PDE models. While

these latter models resemble damped, driven oscillators rather than chaotic systems, a non-uniform

wind field introduces irregular behavior. The basic El Niño-like aspects of these models persist

under stochastic wind noise and westerly wind events, both of which add variability to the PDE

systems. The basic ocean dynamics in all of these models is a simple linear shallow-water model

with friction, and only the wind field or the way it depends on the state of the ocean were varied.

This shows that changing the winds is sufficient to dramatically alter the behavior of a coupled

ocean-atmosphere system, and that much of El Niño unpredictability may be due to detailed yet

deterministic aspects of the atmosphere.

Chap. 2 showed how an ODE model based on large-scale ocean dynamics with intrinsic chaos

can generate El Niño events. The system is quite similar to the Lorenz equations, and is chaotic for

physically reasonable choices of parameters. The background westward wind x∗ causes the eastern

ocean to preferentially stay in the cold state and occasionally venture into a warm El Niño state.

Including the seasonal cycle in x∗ or the equilibrium temperature T ∗ partially phase-locks event

onset to time of year, although we must increase the wind coupling B to maintain the warm-cold

asymmetry. When we apply stochastic noise to the wind x, the model behaves qualitatively the
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same as before even for relatively strong noise amplitudes. Since the model is chaotic, even a

miniscule noise level causes solutions to rapdily diverge from the unperturbed case. This model

provides a “proof of principle” that basic El Niño properties may be explicable by low-order physics,

but it does not remain chaotic when we resolve space more finely. We can view the model as a

two-point discretization of the PDE Eq. 2.2, but it becomes stable as we add more x grid points

[23]. It is a fairly common property of chaotic, low-order ODE truncations of PDE systems that

the chaos disappears as we include more modes.

We must reject as unphysical any aspects of an ocean model which do not persist merely as we

increase the spatial resolution. Therefore, we explored models based on the shallow-water equa-

tions, a PDE system used extensively in the study of homogeneous geophysical fluids. The essential

ocean dynamics in this model are equatorial west-moving Rossby and east-moving Kelvin waves.

Instead of simulating a separate atmosphere and coupling it with the ocean, we parametrize the

atmosphere as wind-induced body forces to the surface ocean currents. A switched forcing mech-

anism (SFM) oscillates interannually between a warm and cold state, and behaves asymmetrically

when a background easterly wind τb similar to x∗ is added. The SFM winds consist of a sea-

sonal cycle with a Walker circulation turned on when the eastern thermocline he is above a critical

depth hc. Since this system is periodic and has a physically-unappealing discontinuous coupling

of the Walker stress, we adopt a model with continuous coupling (the CTM). Here, he acts like a

damped, driven oscillator, with transients that eventually decay and leave a periodic solution. For

the appropriate values of κ (such as 1.75, 1.9), the model’s period is interannual and displays richer

structure than SFM does. τb again makes the eastern ocean tend to be cold but does not make

the model aperiodic. With nonuniform easterly wind (τb2within 8o of the equator and τb1at 10o),

however, the model possesses significant irregularity against a periodic backdrop even after being

run for 1000 years. This affects the height of he peaks which correspond warm states, giving us the

hallmark variability of El Niño. We chose maxima in he greater than 110 m to represent events,

and found very strong locking to the seasonal cycle and an increase in the time between two events

with the strength of the first one. This model seems to conform with the widely-held view that

ENSO is a perturbation to the annual cycle.

A crucial test of these PDE models’ utility is how they respond to stochastic forcing. We first

applied random wind noise to the SFM, and found that noise both in the western and eastern
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parts of the ocean sufficiently agitated he to throw the switch and change the large-scale state of

the ocean. The extreme sensitivity to he is of course lost in the CTM, where noise is still able to

significantly alter the ocean. This takes many years, however, which is consistent with viewing the

model as a damped, driven oscillator rather than as a chaotic system. Westerly wind events are also

able to cause large disruptions in the CTM ocean that last for several years, perhaps permanently

phase-shifting the ocean. However, wind events are not able to affect the ocean state over the short

term (<1 year), which argues against some recent speculation that these events could trigger El

Niño oscillations. On the other hand, wind events lead instantly to El Niño events in the SFM,

because η at one point (he) turns the Walker wind on and off. This suggests that an accurate picture

of how the eastern thermocline interacts with the Walker circulation is essential to understanding

the role of wind events in El Niño onset. Perhaps the instability present in systems with a complete

rather than parametrized atmosphere allow the perturbations in he caused by wind events to grow

quickly enough to induce an El Niño in a model like the CTM, where the Walker cell turns on and

off gradually based on a spatially-averaged η.

There are currently a number of possible mechanisms for explaining the interannual, aperiodic

nature of El Niño. Intrinsic chaos is one approach. While the ODE model from Chap. 2 is chaotic,

the only PDE model considered here that may possess chaos in he is the CTM with nonuniform

τb. It is daunting to analytically investigate the properties of a single grid point in a PDE model,

but numerical studies of stability, Lyapunov exponents, and other tools of dynamical systems can

illuminate the nature of the irregularity in this system. Another way to add variability to the

periodic PDE systems is through long-term changes in parameters such as κ. For instance, it

is believed that midlatitude ocean dynamics change internally on the scale of decades, and that

weather events can propagate these changes to the lower latitudes. Since CTM is a damped, driven

oscillator, varying parameters can constantly generate transients that last for several years, and

mask the system’s underlying periodicity. Besides deterministic processes, we have also seen that

CTM is susceptible to large-scale perturbation from wind noise and westerly wind events. Although

these disturbances do not seem to promote El Niño, they do lead to irregularity. Any workable

model must at least behave qualitatively like the El Niño in the present of noise and wind events,

since they are indeed present in nature. All of the models presented in the thesis do this, which

further encourages us that they capture some of the physics essential to El Niño.
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There is currently a very active debate about what parts chaos, deterministic processes, and

stochasticity play in El Niño, and we can hardly claim to have settled this complex issue here.

This discussion serves to illustrate the general nature of geophysical research. No one doubts that

we know the underlying physics of fluid flow and rotating reference frames. The problem, how-

ever, lies in making the appropriate simplifications that retain the needed physics while still being

tractable. Moreover, there is a scarcity of detailed empirical data about the ocean-atmosphere

system, and (fortunately for living organisms) we lack the ability to conduct anything like a con-

trolled experiment on geophysical scales. Ocean science involves a good measure of art, in choosing

what aspects of the system to neglect and emphasize in a given situation. The perverse ability of

intermediate models to outperform the most sophisticated general circulation models in El Niño

predictions affirms that bigger computers, smaller grid spacing, and greater numerical precision

does not guarantee a better understanding of nature. Many oysters concealing pearls of wisdom

still reside under the sea, waiting not just for the sledgehammer of supercomputers but also for the

delicate touch of theoretical physicists.
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