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Abstract

In this paper, I study the prospects for detecting the lepton flavor-violating decay

τ → µγ. Although lepton flavor conservation is a central principle of the Standard

Model, some extensions to the theory, such as supersymmetry and string theory, predict

that this conservation law is not exact. An extensive search for this decay at the

CLEO detector found no candidate events in 1.4 × 106 τ pairs, and placed an upper

limit of 4.2 × 10−6 on its branching ratio at 90% confidence level. An experiment

planned to take place at the BELLE detector in KEK, Japan will examine a much

larger number of τ pairs, ∼ 108. I present here a data analysis process that admitted

9 background τ → µγ events in a Monte Carlo simulation of the experiment, with a

signal acceptance of 19.3%. Given these results, the BELLE experiment should detect

a τ → µγ branching ratio of 2.7× 10−7 at 90% confidence level, well below the CLEO

upper limit.
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1 Overview

Over the past three centuries, a coherent framework containing almost all our knowledge

of fundamental physics has evolved. Dubbed the “Standard Model” (SM), this theory pro-

vides a so-far empirically correct account of all the particles observed in nature and their

interactions, with the only exception being gravity. As successful as this theory is, there

are strong reasons to believe it is incomplete. First, gravity has yet to be included in the

theory the way the strong, weak, and electromagnetic interactions have been. Within the

SM itself, the origin of mass is still a largely open question, with most physicists favoring

the Higgs Mechanism as the solution. Cosmology also offers suggestions that the SM must

be extended. In particular, cosmologists do not understand how to account for the density

fluctuations in the early universe needed to produce its current structure of matter clumped

into galaxies, with one popular solution being “dark matter,” or particles not yet included

in the SM.

Some of the currently fashionable extensions to the SM question some of its conservation

laws. For instance, the SM holds that a quantity called lepton flavor is conserved in all

interactions, but supersymmetry and some forms of string theory hold that this quantity is

not exactly conserved [1],[2]. Recently, efforts have been made to detect the lepton-flavor

violating process τ → µγ. An experiment on the CLEO II detector at the Cornell Electron

Storage Ring (CESR) produced 1.4 × 106 τ pairs and placed an upper limit of 4.2 × 10−6

on the branching ratio for this decay at 90% confidence level [3]. An experiment at the

Japanese BELLE detector, scheduled for the near future, will examine 108 τ pairs for this

decay. In this paper, I present an analysis of the upper limit estimate which the BELLE

experiment can establish. I develop a procedure for detecting τ → µγ decays, including

cuts to eliminate background events. I then simulate this experiment computationally to

optimize the signal-to-noise ratio of these cuts and determine how many background events

they will admit. The resulting set of cuts registered 9 background events from the simulation

and accepted 19.3% of signal events, i.e., events where τ → µγ occurred.
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2 The Standard Model and Lepton Flavor

Broadly speaking, the SM provides a scheme for classifying the known particles and their

interactions. The fundamental particles are divided between fermions and bosons, with

the fermions subdivided into the quark and lepton sectors. The lepton sector consists of

three flavors or generations, each containing a massive lepton with electric charge -1 and

a companion neutrino. The massive leptons, in order of increasing mass, are the electron

(denoted by e−), the muon (µ), and the tau lepton (τ). The three flavors of neutrinos (νe,νµ,

and ντ ) are all thought to be massless, although the SM neither requires this nor offers any

fundamental insight into why this should be. We will see below that the neutrino masses

relate to a phenomenon called generation mixing, which occurs in the quark but has not

yet been observed in the lepton sector. Other than the fact that all quarks are massive,

the quark sector is structured in exactly the same way as the lepton sector, with the three

generation being (up, down), (charm, strange), and (top, bottom). We can represent this

scheme as follows:

quarks :




u

d







c

s







t

b


 , leptons :




νe

e







νµ

µ







ντ

τ


 .

Besides simply classifying particles, the SM also describes how they interact. The

fermions mentioned above interact by the exchange of the various fundamental bosons, called

gauge bosons. Each of the basic interactions is said to be mediated by certain gauge bosons:

photons (γ), gluons, and the massive W± and Z0 particles mediate the electromagnetic,

strong, and weak force, respectively. The SM includes a beautiful procedure for determining

the form of the interaction between fermions and gauge bosons. One starts by constructing

the Lagrangians for the free propagation of the relevant fermions and bosons, which describe

how each kind of particle behaves “by itself.” One then demands that the Lagrangian is

invariant under some transformation, called a symmetry. This condition can only be satis-

fied if a term is added to the Lagrangian involving the wavefunctions of both the fermions
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and bosons — the so-called interaction term. One exploits this mechanism to find the La-

grangians for the electromagnetic, weak, and strong interactions, indicating a deep similarity

between these three forces.

Nowhere is this process more straightforward and well-understood than in electromag-

netism. We start with the Lagrangian LM for Maxwell’s equations in free space, which

describes free photons, and LD for the Dirac equation, which is the relativistic equation

of elementary spin-1/2 particles. We then demand that the combined Lagrangian LTot =

LD + LM + LInt is invariant under the transformation ψ → exp[iα[~x]]ψ (in this paper, ~x de-

notes a four-vector and xx a three-vector). This symmetry, called “local gauge invariance,”

merely states that changing the phase of ψ, by a different amount at every point in spacetime,

should have no effect on the equations of motion. This can be satisfied by a unique choice of

LInt (up to the usual gauge invariance in the electromagnetic potential ~A), and the resulting

LTot yields the quantum-mechanical analog of Maxwell’s equations in regions of charge, or

the interaction of electrons and photons. Of course, Maxwell’s equations conserve charge,

and so do the equations of motion implied by LTot. However, we can foresee this before

constructing LInt thanks to Emmy Noether’s famous 1917 theorem connecting symmetries

and conservation laws ([4], App. F). Noether proved that a symmetry of the Lagrangian is

equivalent to a conserved quantity. We now understand electric charge conservation not as

fundamental in its own right, but as a consequence of the local gauge symmetry we impose

on the Lagrangian.

Local gauge invariance is considered a necessary symmetry of the Lagrangian describing

all the interactions in the SM. For the electromagnetic force, this symmetry manifests itself

in charge conservation, which is therefore seen as a fundamental conservation law. There

are, however, other conservation laws which do not stem from local gauge invariance or any

other “natural” symmetry of the Lagrangian. Instead, one must modify the SM in some way

which amounts to explicitly tacking on the needed symmetries. A prime example of this is

flavor conservation. Although this “artificial” conservation law holds in the lepton sector,
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it is noticeably violated in the quark sector. The SM includes a formalism by which the

weak interaction can change quark flavor, or the net number of quarks from each generation

present. The basic idea is that the quark eigenstates of the weak interaction are not iden-

tical to the mass eigenstates. The electromagnetic Lint contains the 4-current of electrons,

jµ ≡ ψγµψ, where ψ is now a 4-vector and γµ a 4 × 4 matrix. The exact meaning of the

overbar and the γ matrices stem from the Dirac equation and are not important for us, so

we will omit them. The weak LInt, on the other hand, deals with a 3-vector of 4-currents,

one for each flavor of quark or lepton:

Jw = (u, c, t)Mq




d

s

b




, (1)

where each letter represents the wavefunction for a given quark. We use the six quarks

here, but the same current describes lepton interactions if one replaces the column vector

with (e, µ, τ) and the row vector with the corresponding neutrinos. Mq denotes a 3 × 3

unitary matrix (M †
q = M−1

q ), called the mixing or Kobayashi-Maskawa (KM) matrix, and

allows for generation mixing. The wavefunctions in the column vector are not weak but mass

eigenstates; the KM matrix specifies how to write the former as linear combination of the

latter. For instance, the weak eigenstate of the down quark dw = M11d + M12s + M13b.

That Mq is nondiagonal has been well-established in numerous experiments where quark

flavor is indeed not conserved, such as Kaon decay. While the SM clearly allows for a

nondiagonal Mq, this fact does not stem from any general principle within the theory but

must be inserted ad hoc. More importantly, the SM offers little insight into why the KM

matrix has the values it does, or what the values should be for an analogous “lepton KM

matrix” Ml. One insight the SM does offer is that exactly massless neutrinos would suppress

“horizontal” transitions, such as τ → µγ. To see this, we first note that such transitions

in the quark sector, for instance d → s, are made possible by processes that involve weak
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neutral currents, and thus the Z0 boson. A precise calculation of the cross-sections for these

processes involves quantum field theory and is not of interest here [5],[4]. The relevant upshot

of such an analysis is the GIM mechanism, which stipulates that the unitarity of Mq and

identical u, c, and t quark masses would completely suppress this diagram. The current SM

holds that Mq is indeed unitary, but the quark masses are different. In the lepton sector,

we can contemplate exactly the same process and draw the same conclusions. However,

the neutrino masses are known to be either tiny or zero, implying that the mass difference

between different flavors is small. This means that the neutrino masses obscure the values

of Ml, and will prevent many lepton flavor-violating decays that may otherwise be possible.

3 Data Acquisition and Analysis

In order to study the decay of the τ , we need to produce a large number of them in a

detector. The BELLE detector produces particles by colliding an e+ and an e− beam. Most

of the time, the two particles will simply Rutherford scatter off each other. However, as with

any particle-antiparticle pair, there is a cross-section for them to annihilate and produce a

photon. In the e+e− center-of-mass frame (CM), this event consists of two particles colliding

with equal and opposite 3-momenta and producing a photon. Since total 4-momentum is

conserved, and since the total 3-momentum is 0 before the collision (this condition defines the

CM frame), the total 3-momentum must also be 0 afterwards. But the only particle present

afterwards is the photon, which must travel with speed c in the CM (or any other inertial)

frame, so the total 3-momentum afterwards cannot be 0. If this process is kinematically

forbidden, how can it happen at all? The perspective of quantum electrodynamics is that

a particle can have any mass necessary for the process under consideration, but how much

this can differ from its “nominal” mass depends on how long it exists. We can therefore

contemplate a photon at rest in the CM frame which abides for only a short time and then

decays. Such a photon is called a virtual photon (γ∗), and is said to be off its mass shell
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(since it must have nonzero mass to be at rest in the CM frame). In principle, any photon

that is emitted and then absorbed by another particle can also be considered virtual, but

the longer is persists the less off its mass shell it can be, and for sufficiently large times the

distinction between virtual and real photons is semantic.

To conserve energy, the virtual photon must decay into particle whose total energy equals

the sum of the CM energies of the two incoming particles. The energies of the e− and e+ in

the lab frame for the BELLE detector are E− = 7.996 GeV and E+ = 3.5 GeV, respectively.

At these energies we can safely approximate the particles as massless, giving a combined

invariant mass of 10.58 GeV/c2 (see discussion below). I adopt the common practice of

working in units where c = 1, so that masses are measured in energy/c2 and momenta in

energy/c. The invariant mass is both a Lorentz invariant and a conserved quantity in all

collisions, so the CM energy of the virtual photon’s decay daughters will be 10.58 GeV. Since

the τ rest mass is 1.777 GeV/c2, it is possible for the photon to decay into a τ+τ− pair —

this process respects all known conservation laws. This will provide us with τ particles.

Having a mechanism to produce τ ’s, we now need a way to determine when a virtual

photon is produced and indeed decays into a τ pair. First note that given CLEO’s upper

limit of 4.2 × 10−6 on the branching ratio, the probability of a τ pair being produced, and

both decaying into a µγ pair, is at most 1.8 × 10−11. Therefore, we assume that in an

event where one τ decays to µγ, the other τ , called the spectator, will decay through an

already-known channel. In a real sense, then, an event where both τ ’s decay to µγ is not a

signal event. We select 7 τ decay modes which together account for 95.9% of the branching

ratio, and look for the end-products of one of these decays plus τ → µγ in the detector’s

output (see table 1). In a more thorough analysis, we could increase this number slightly

by including kaon decay modes, which are identical to those of the pion (π) but with much

smaller branching ratios. We list the decays in the case that the τ+ is the spectator, but

we also detect the same modes of the τ−. We do this by requiring that the number of each

particle type (matter or antimatter) equals those for one of the 7 modes, and that the total
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Table 1: Detected Decay Modes.

τ+ spectator decay Branching ratio (%) Observed final state

π+π0ντ 25.24 µ−π+3γ

e+ντνe 17.83 µ−e+γ

µ+ντνµ 17.35 µ−µ+γ

π+ντ 11.31 µ−π+γ

π+(≥ 2)π0ντ 9.8 µ−π+(≥ 5)γ

2π+π−ντ 9.44 µ−π+π+π−γ

2π+π−(≥ 1)π0ντ 4.88 µ−π+π+π−(≥ 3)γ

end-product charge is 0. The τ lifetime of 2.4× 10−13 s guarantees that almost every τ will

decay well before reaching the walls of the detector (∼ 2 m from the e+e− collision region).

The π0 has a minute lifetime (∼ 8.4 × 10−17 s) and will almost certainly decay into 2 γ’s

before leaving the detector, while the µ lifetime is long enough (2.2 µs) that it will almost

certainly reach the detector before decaying. These facts, along with the incredibly weak

interaction of neutrinos with matter, leads to the “observed final state” column in table 1.

To implement our analysis, we need to differentiate between charged π’s, µ’s, e’s, and

γ’s, and to measure their momenta. Fig. 1a presents a schematic of the BELLE detector,

and technical information is given in [6]. The detector measures charged particle momenta

through the central drift chamber (CDC) which surrounds the region where the initial e+e−

collision takes place. A drift chamber consists of an array of wires immersed in an easily-

ionized gas, with an equal hydrogen-ethane mixture used in BELLE. Charged particles ionize

the gas as they pass through it, leaving behind a streak of ionized particles along their

trajectory. A weak electric field moves the liberated electrons to a negative anode wire at

a well-known drift velocity. A particle produced in the initial e+e− collision is typically

so energetic as to be moving very near c, so we can safely estimate the time it is created

as the time it first interacts with detectors beyond the CDC, such as the electromagnetic

calorimeter. Knowing the time of the particle’s creation and the electron drift velocity, we
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can determine how far a particle’s track is from an anode that receives these electrons. We

can then place a circle around each wire, representing the track’s distance from it, and then

fit a track to touch all the circles. A magnetic field also threads through the CDC, causing

charged particles’ paths to curve. The Lorentz force law remains valid in special relativity,

giving pc = qBR in gaussian units. The charge is ±1 for every charged particle we observe

(i.e., everything except free quarks), and since we control the direction of the B-field, we can

deduce the charge from the direction of curvature. If we know the charge we can determine

p, the momentum transverse to the magnetic field by measuring the radius of curvature R.

The particle’s total momentum deviates slightly from this, and special techniques such as

placing a few of the CDC wires skew relative to the rest of the array exist to measure this

effect.

The CDC may tell us the momentum of charged particles, but we need to use other

equipment to study photons and to determine the type of particle. The CDC is surrounded

by CsI(Tl) crystals which constitute the electromagnetic calorimeter (ECAL). As photons

pass through a crystal, they lose almost all of their energy by e+e− pair production, which

in turn heats the crystal. Besides the photon’s energy, we can also resolve the direction of

photon motion to be within the segment of solid angle subtended by the crystal. Charged

particles lose energy via ionization and occasional nuclear collisions, but tend not to lose

much of their energy. The notable exception to this is the electron: because it has a high

cross-section for emitting bremsstrahlung photons when near nuclei, it will lose almost all

its energy in the ECAL. We can distinguish an electron from a photon by whether a track

appears in the CDC that connects to the crystal which the particle in question hit. The

last challenge is to difference between muons and pions. After passing through the ECAL,

these particles encounter a series of iron sheets interleaved with detector layers, called the

iron flux-return yoke. Energetic muons will tend to pass through the iron, while the pions

will engage in strong interactions with the iron nuclei and therefore survive for only a few

layers on average.
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Figure 1: Diagram of BELLE Detector and kinematic geometry.

I now describe how to identify a signal event as such. I discard any events where one of

the final states in table 1 is not observed in the detector. For each remaining event, I identify

all possible µγ pairs and store certain measured parameters for the pair. Since many of the

γ’s originate from a π0 decay, I eliminate from the list of γ’s any pairs that reconstruct to

the π0 invariant mass. Any pairs which meet certain kinematic conditions are considered

τ → µγ events. I simulate the experiment assuming the current SM, which forbids τ → µγ.

The number of events surviving my cuts represents the background number of events that

should pass through if τ → µγ does not occur. This number is crucial to the statistics of

measuring the τ → µγ branching ratio (see below).

I base my cuts on the µγ pairs on relativistic kinematics, using the geometry depicted in

fig. 1b. The first cut pertains to the invariant mass of the µγ system. Recall from special

relativity that if a particle of energy E moves with 3-velocity v in an inertial frame of

reference, its 4-momentum is defined as

~p ≡ (E,p), where E ≡ γm, p ≡ γmv, and γ ≡
√

1− v2 (2)

(remember that I work in units where c = 1). The magnitude of a 4-vector such as momentum

is defined by |~p|2 ≡ E2 − p2, which ensures that it is Lorentz invariant (or the same in all
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inertial frames). Weak interactions, along with all other known interactions, conserve 4-

momentum, that is, ~pb = ~pa, where ~pb = total 4-momenta before interaction and ~pa =

total 4-momenta afterwards. In particular, this implies that their magnitudes are equal:

|~pa| = |~pb|. For the τ → µγ decay,

~pb = ~pτ = γmτ (1,v) =⇒ |~pb| = γmτ

√
1− v2 = mτ . (3)

This gives us a powerful cut: in any inertial frame (such as the lab frame), |~pµ + ~pγ| = mτ .

Figure 2: Invariant mass spectum (GeV/c2), signal above background.

I now need to translate this condition into a constraint on empirically measured param-

eters. We can identify muon tracks as such, so we know their mass. We can also measure
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the µ and γ 3-momenta vectors. Defining M ≡ |~pµ + ~pγ| gives

M2 = (Eµ + Eγ)
2 − (pµ + pγ) · (pµ + pγ)

= E2
µ − p2

µ + E2
γ − p2

γ + 2EµEγ − 2pµpγ cos θµγ

= m2
µ + 2pγ(Eµ − pµ cos θµγ)

= m2
µ + 2pγpµ(

√√√√1 +

(
mµ

pµ

)2

− cos θµγ), (4)

where θµγ is the angle between pµ and pγ, and I have used E2 = p2 + m2. This last formula

involves the muon mass and the 3-momenta of the two particles, all of which we know

or measure. A Monte Carlo simulation described below shows that a judicious choice of

invariant mass range in GeV/c2 is 1.73 < M < 1.82 (see fig. 2)1.

I can derive another kinematic cut from conservation of each component of 4-momentum.

Following BELLE protocol, I define the positive z-axis to point in the direction of the elec-

tron’s momentum. Since the electron is more energetic than the positron, the CM frame is

moving along the positive z-axis relative to the lab frame. The two τ ’s must emerge back-

to-back to conserve 4-momentum in the CM frame, but the CM motion in the lab frame

will add a forward z-component to each observed laboratory 3-momenta. It is possible to

analyze this situation in the CM frame and then Lorentz boost to the lab frame, but I choose

to work in the lab frame for concreteness. I choose the y-axis so that the e+e− and τ+τ−

trajectories all lie in the yz-plane. Let θz1 and θz2 be the angles between the 3-momentum

of each τ and the z-axis. The total momentum before the collision is:

~pb = ~pe− + ~pe+ = (E− + E+, E− − E+, 0, 0), (5)

1All signal plots represent a simulation with 5 × 104 events, and with only those events displayed that
survived the prior cuts as listed in table 2. Background plots show the result of a simulation with 5 × 105

events and no cuts.
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where E+ and E− denote the electron and positron energy respectively. Note that E deter-

mines p through E2 = p2 + m2, and with beam energies of ∼ GeV, the electron mass of

0.511 MeV/c2 is negligible. From the geometry,

~pa = ~pτ+ + ~pτ− = (E1 + E2, 0, p1 sin θz1 + p4 sin θz2 , p1 cos θz1 + p2 cos θz2). (6)

Conservation of 4-momentum gives ~pb = ~pa. Working out the algebra, I solve for the magni-

tude of the τ 3-momentum:

pi =
AB + Σ

√
B2 + (mC)2

C2
' B

Σ− A
+ 0.335, where (7)

Σ = E− + E+, A = (E− − E+) cos θzi
, B = 2E−E+, and C = Σ2 − A2.

In the limit where mτ = 0, this reduces to pi0 = B/(Σ−A). Using BELLE’s beam energies

gives |pi−pi0−0.335| < 0.001GeV/c for all θzi, so I use the approximation pi ' pi0 +0.335 for

simplicity. This relation between the magnitude of the reconstructed τ momentum and its

angle with the z-axis serves as the second kinematic cut. Studying the Monte Carlo output

in fig. 3, I decide to require the τ momentum to be within 0.1 GeV/c2 of the value predicted

from θz.

The third cut is not a strict equality, but comes from the exact differential cross-section

of the electromagnetic e+e− interaction. In the CM frame of the decaying τ , the µ and γ are

emitted back-to-back. However, the τ is moving relative to the lab frame, with momentum

typically of order GeV/c. When we transform the scattering angle of 180◦ in the CM frame

back to the lab frame, the τ momentum gets added to that of the µ and γ, resulting in

a small lab opening angle θµγ. A detailed calculation of the relative frequency of a given

opening angle requires a quantum electrodynamics calculation and is beyond our purposes.

Fig. 4 displays θµγ for all signal events which survive the first two cuts, and background

events with no pre-cuts. Given the substantial reduction in noise events to be gained by
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Figure 3: Reconstructed τ momentum (GeV/c) vs. cos θz, signal above background.

rejecting large opening angles, I choose to require 0.1 < cos θµγ < 0.9 and accept a tiny loss

of signal events. Note the kinematic edge prevents opening angles very near 0◦: only a τ

velocity of c could completely close a 180◦ CM angle to 0◦ in the lab frame.

My final cuts pertain to the photon energy and muon momentum. Besides π0’s, the

major source of photons in the background events that survive the above cuts originate

from bremsstrahlung emitted by the initial e+ or e−. In Monte Carlo signal events, the

γ energy distribution was significant from 0.5 to 7.0 GeV. To reduce the bremsstrahlung

events, I cut all µγ pairs where the photon energy does not fall in this range. This should

be of particular help in eliminating background events with low photon energy, since the

spectrum of bremsstrahlung goes like 1/Eγ. Examining the muon momentum spectra also

reveals a rapid falling-off of background events with increasing momentum, and leads me to

reject events with pµ < 0.6 GeV/c.
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Figure 4: cosθµγ spectrum, signal above background.

To determine good numerical ranges for the cuts, and the resulting signal acceptance and

background level, I perform a Monte Carlo simulation of the BELLE detector. Given the

physical design of the detector, one could calculate the probability that, say, a given τ will

decay in a certain way and that BELLE will measure the momenta of the end products to be

within some range. Although possible, this is certainly not easy. The Monte Carlo technique

is the method of choice for doing this type of analysis. Whenever there can be more than

one physical outcome to some process in the experiment, one assigns a range within some

numerical interval (say 0 to 1) to each outcome based on the theoretical probability that

it occurs. For instance, to decay a τ , one divides an interval into ranges proportional to

the branching ratio for each possible decay, and then generates a random number in the

interval to determine which decay actually happens. The simulation also takes into account

the physical workings of measurement devices, smearing the final results as they would be
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Figure 5: Photon energy spectrum (GeV), signal above background.

Figure 6: Muon momentum spectrum (GeV/c), signal above background.
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Table 2: Effect of Cuts on Monte Carlo Events.

Cut No. Description Signal Background

0 no cuts 25,119 24,779

1 τ invariant mass 16,558 603

2 τ momentum 11,096 15

3 µγ opening angle 10,297 4,090

4 γ energy 10,008 12,339

5 µ momentum 9,638 20,838

in the real experiment. Monte Carlo techniques must make simplifying assumptions, usually

by treating the particles as classical projectiles and modeling the errors of some devices by

gaussian smearing.

The first Monte Carlo simulation I performed is a run of only signal events, where I

force the τ+ to always decay to µ+γ via a generic phase-space decay using the relativistic

Fermi’s Golden Rule [7]. I produce τ pairs using the koralb package [8] within the BELLE

Analysis Software Framework (BASF) [9], and simulate the experiment with the qq [10] and

fast simulator (fsim) [11] modules and my own analysis module. The initial data acquisition

routine only accepts events where the detected particles match one of the 7 final states in

table 1, and only considers those photons which do not reconstruct to the π0 mass when

paired with any other photon. I used a simulation with 5× 104 τ pairs to select cut ranges,

and then performed a separate run with different random number seeds to determine the

combined effect of the cuts. Table 2 and figs 2-6 show the effect of the cuts on this second

run. I define the acceptance α of my algorithm to be (num. signal events detected)/(num.

signal events produced), and find that α = 19.3%.
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4 Statistical Analysis

Having developed a set of cuts with an acceptance (19.3%) comparable to CLEO’s 20.5%, I

now must determine how this analysis routine acts on the results of an actual BELLE run.

As mentioned above, this Monte Carlo simulation is based entirely on the current SM, which

forbids τ → µγ. The number of µγ pairs that survive our analysis therefore represents a

background level that will be present even if the decay we are looking for does not occur

in nature. Of the 5 × 105 background events generated when selecting values for the cuts

and displayed in figs.2-6, none survived every cut. I then performed a simulation with 108 τ

events, the expected total yield of the scheduled BELLE experiment. After applying all the

cuts, Nb = 9 events survived. This then is the nominal background number of events.

How does this translate into an upper limit on the branching ratio r for τ → µγ? Recall

that the branching ratio for a given decay is simply the probability that when a τ decays, it

will decay by this process. If we were to produce N τ pairs many times, the average number

of µγ decays that would occur is then 2Nr. Since the number of decays is in reality always

an integer, the outcome of repeated experiment will follow the Poisson distribution [12]. The

Poisson distribution gives the probability f of finding n events in some range of x (say space)

given that the events occur independently of each other and of x with the average rate r as:

f [n, r] =
rne−r

n!
. (8)

It is hard to imagine a mechanism by which the decay of one τ could be coupled either to

its location or motion in space, or to the recent decays of other τ ’s in the same vicinity.

Therefore, the conditions obtain for us to treat the τ decay as a Poisson process.

Rather than consider the statistics behind directly measuring the µγ branching ratio r,

it is more useful to look at what upper limit we can place on r given an average number

of background events Nb. Let us first consider the case of no background and complete

acceptance. Defining No and Ns to be the number of total observed and observed signal
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events, we have No = Ns = 2Nr. The general idea is to assume the “worst-case scenario:”

our experiment happened to produce an inordinately small number of signal events for the

true r. In this situation, r would be large enough that the probability of detecting Ns or

less signal events is small. We choose a confidence level (C.L.) 1 − ε and find the r that

leads to a 1 − ε probability that a given experiment would detect more than the Ns events

we measured. Mathematically, we want to find r so that

1− ε =
∞∑

n=Ns+1

f [n, r]. (9)

We must now take into account the effects of the background level Nb and of the finite

signal acceptance α. In this case,

Ns = 2Nrα, and No = Ns + Nb = 2Nrα + Nb. (10)

Given Ns, the “true” branching ratio is then

r =
Ns

αN
. (11)

Extracting Ns from No in the presence of background is treacherous, but the general idea is

still to assume we produced an unusually low number of signal events, and then find a value

of r that yields this number ε of the time. It suffices for our purposes to quote the result of

this analysis given in [12]:

ε =
e−(Ns+Nb)

No∑
n=0

(Ns+Nb)
n

n!

e−Nb

No∑
n=0

Nn
b

n!

. (12)

To get an idea of what kind of upper limit my analysis routine lets us set on r, suppose we

observe one standard deviation more events than background. For any counting experiment

which follows the Poisson distribution, we know that the error on a measured value m is just

σm =
√

m. This yields No = Nb + σb = 12. We can then deduce at 1 − ε = 90% C.L. that
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Ns is at most 9.1, which gives r ≤ 4.7 × 10−7. This would be a factor of ∼ 9 improvement

over the CLEO upper limit of 4.2× 10−6.

Although the precise statistical treatment here is rather subtle, a few limiting cases are

clear. If the true r is sufficiently small, No ' Nb, and it will be impossible to extract its

exact value from the background. On the other hand, if r dwarfs the background, it will

be easy to detect. The two extremes converge and make for a complex situation near the

“background” branching ratio Nb/N , which for 9 background events is 9×10−8. An effective

way to see what kind of r we can detect is to consider a quantity called the significance S

as a function of r. I define

S ≡ Ns

σs

, (13)

where σs is the error on Ns. Propagation of error dictates that

σ2
s =

(
∂Ns

∂No

)2

σ2
o +

(
∂Ns

∂Nb

)2

σ2
b =

√
No + Nb, (14)

where σo and σb are the errors on No and Nb respectively. For the significance, this gives

S =
Ns

σs

=
(No −Nb)√

No + Nb

=
2Nrα√

2Nrα + 2Nb

, (15)

where I have substituted No = 2Nrα + Nb. Fig. 7 shows significance versus branching ratio

for 108 events and a background of 9. A 90% C.L. corresponds to a significance of 1.64,

which shows that my algorithm can detect a branching ratio of 2.2× 10−7 at that C.L. Note

that for an r slightly lower than the CLEO upper limit, say r = 4× 10−6, the significance is

quite high: S = 12.1.

5 Conclusion and Future Prospects

The results of Monte Carlo simulations presented in this paper strongly suggest that the

BELLE experiment offers the opportunity to increase the upper limit on the τ → µγ branch-
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Figure 7: Significance (S) vs. Branching Ratio (r), N = 108, Nb = 9

ing ratio by at least an order of magnitude. They show that the analysis procedure I use

identifies 9 background events in a sample of 108 τ pairs and accepts 19.3% of signal events.

Nonetheless, there is room for improvement in the analysis algorithm. Most importantly, the

cuts pass a nonzero number of background events, which greatly complicates the statistics

and lowers the potential upper limit improvement. Unfortunately, it seems hard to imagine

new kinematic cuts that would do this without severely degrading the signal acceptance.

Since my acceptance is slightly worse than that of CLEO and my background level is con-

sistent with theirs when scaled, it is possible that I am just inside a regime where there is

simply an irreducible background level, and the CLEO group was just outside it. Another

concern is that I have dismissed events where the initial virtual photon decays by another

channel, such as into a quark-antiquark pair, as not contributing anything to the background

level. This is not clear a priori, and should be explored in further simulations.

Regardless of theoretical bias, the search for lepton flavor violation may provide a doorway

to new physics, and certainly to a phenomenon not explained by the Standard Model. Besides

simply accounting for this process, any acceptable theory must also explain why, if allowed,

it is so incredibly rare. As with all domains not yet explored experimentally, there is the

possibility that Nature holds something unexpected in store for us. In a way, it is upsetting
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that some extensions to the Standard Model already call for lepton flavor violation: the

unanticipated demon, lurking just beyond the pale of the human imagination, creates the

largest tremors in our intellectual edifice.
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