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In this Letter, we discuss the concept of the nonlinear Landau damping rate, �, of a driven electron

plasma wave, and provide a very simple, practical formula for �, which agrees very well with results

inferred from Vlasov simulations of stimulated Raman scattering. � actually is more complicated an

operator than a plain damping rate, and it may only be seen as such because it assumes almost constant

values before abruptly dropping to 0. The decrease of � to 0 is moreover shown to occur later when the

wave amplitude varies in the direction transverse to its propagation.
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As is well known, in a collisionless plasma, and in the
linear regime, an electron plasma wave (EPW) with phase
velocity v� accelerates the electrons of initial velocity

v0 < v�, and decelerates the other ones. If this leads to

an overall acceleration of the electrons by the wave, as, for
example, in an initially Maxwellian plasma, then because
of energy (or momentum) conservation, the plasma wave
damps at a rate, �L, first derived by Landau in his famous
1946 paper, Ref. [1]. Landau damping is therefore a non-
collisional, linear phenomenon, which is actually primarily
due to the nearly resonant electrons, those such that jv0 �
v�j & �L=k, where k is the plasma wave number.

A nonlinear counterpart of �L was first calculated by
O’Neil in Ref. [2], who considered an electron plasma
wave of constant and uniform amplitude, E0, which grew
infinitely quickly in an initially Maxwellian plasma. When

!B � �L, where !B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ekE0=m

p
, �e being the electron

charge and m its mass, most of the nearly resonant elec-
trons are trapped and oscillate in the wave trough. Within
one oscillation period, a trapped electron neither gains nor
loses momentum in the wave frame, so that the mechanism
which gave rise to Landau damping vanishes, and so does
the damping rate after a few oscillations at a frequency
close to !B, as shown by O’Neil.

Despite the countless number of papers written on the
subject since these two seminal works were published, we
are not aware of any simple analytic expression, supported
by numerical simulations, for the nonlinear noncollisional
damping rate of an EPW whose amplitude may arbitrarily
vary in space and time. This is what we provide in this
Letter, in the limit of nonrelativistic electron motion and
slow variation of the wave amplitude. We moreover focus
on driven plasma waves since our work was primarily
motivated by recent numerical [3,4] and experimental [5]
papers on stimulated Raman scattering (SRS) reporting
reflectivities far above what could be inferred from linear
theory, with direct implication to inertial confinement fu-
sion. This so-called ‘‘kinetic enhancement’’ was attributed
to the nonlinear reduction of the Landau damping rate,

although no theory, nor analytic formula, was available to
support this assumption. The present Letter fills this gap.
Before proceeding, it is necessary to clarify what one

means by the ‘‘nonlinear Landau damping rate’’ of a wave
which, since it is driven, grows. Actually, the driven EPW
accelerates electrons exactly the same way as if it were
freely propagating, which hampers its growth, and one
would like to account for this through an effective damping
rate that could be used in an envelope equation. More
precisely, when the EPW and driving electric fields are,

respectively, ~EEPW ¼ Ep sin’x̂ and ~Edrive ¼ Ed cosð’þ
�’Þx̂, with jE�1

p;d@xEp;dj � @x’ � k, jE�1
p;d@tEp;dj �

�@t’ � !, and �’ � ’, one would like to write the
following envelope equation for the EPW amplitude,

@tEp þ vg@xEp þ �Ep ¼ Ed cosð�’Þ=@!�r
env (1)

where � is called the (nonlinear) Landau damping rate of
the driven plasma wave. Actually, the nonlinear envelope
equation of an EPW has already been derived in Ref. [6],
and is, when Reð�Þ � �1 and jImð�Þj � 1,

Im ð�ÞEp � k�1@xEp ¼ Ed cosð�’Þ (2)

where � is the electron susceptibility, � � i�0=ð"0kE0Þ,
�0 and E0 being, respectively, the complex amplitudes of
the charge density, �, and of the total longitudinal electric
field, i.e., EEPW þ Edrive � E0e

i’ þ c:c: and � � �0e
i’ þ

c:c: In this Letter, we derive a theoretical expression for
Imð�Þ showing that Eq. (2) can indeed be cast in the form
of Eq. (1) and provide explicit formulas for all the coef-
ficients of this equation. The accuracy of our theoretical
estimate for Imð�Þ can be appreciated in Fig. 1(a), while
the nonlinear variations of the coefficients of Eq. (1) are
illustrated in Figs. 1(b)–1(d).
Let us first assume that the total longitudinal field am-

plitude, E0, is uniform, while its time variation is such that
j�j � jE�1

0 dtE0j � !pe, where !pe is the plasma fre-

quency. For a freely propagating plasma wave, when �L �
!pe, the Landau damping rate may be estimated using
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the expansion Im½�ð!� i�LÞ� � Im½�ð!� i0Þ� �
�L@!Reð�Þ. Then, Imð�Þ ¼ 0 yields �L ¼ Im½�ð!�
i0Þ�=@!Reð�Þ. Here, we would like to make a similar
expansion to get

Im ½�ð!þ i�Þ� � Im½�ð!þ i0Þ� þ �@!�
r
env: (3)

When Ep � Ed, which is typically the case for SRS (see

Ref. [7] for a detailed discussion), � � E�1
0 dtE0 �

E�1
p dtEp. Hence, plugging Eq. (3) into Eq. (2) would yield

the envelope Eq. (1) with � ¼ Im½�ð!þ i0Þ�=@!�r
env. In

order to calculate Imð�Þ, we use the expression, � ¼
�iðk�DÞ�2he�i’i=�, derived in Ref. [6], where �D is the
Debye length, � ¼ eE0=kTe, Te being the electron tem-
perature, and

he�i’i ¼ 1

2�

Z �

��

Z þ1

�1
fð’; v; tÞe�i’d’dv (4)

where f is the electron distribution function, and ’may be
seen as a dynamical variable such that, for each electron,
d’=dt ¼ kv�!, where v is the electron velocity. Let us
first give an estimate of he�i’i obtained through the means
of a first order perturbation analysis. This amounts to using
the following expansion ’ðx; tÞ ¼ ’0 þ ðv0 � v�Þ�þ
�’, where � ¼ k�D!pet, velocities are normalized to the

thermal one, vth � �D!pe, and, at 0 order in the time

variations of v�,

�’ ¼ �
Z �

0

Z u

0
�ð	Þeið’0þw	Þd	duþ c:c: (5)

where we have denoted w � v0 � v�. As shown in

Ref. [6], deeply trapped electrons do not contribute
to Imð�Þ, and one may therefore calculate Imð�Þ by
only accounting for electrons with initial velocity
jv0 � v�j> Vl, where Vl�maxf0;½4!B=ð�kvthÞ�½1�3=R
t
0!BðuÞdu�g. Then, using the expansion, he�i’i �

h�i�’e�ið’0þw�Þi, we find

he�i’i¼ i
Z
jwj�Vl

Z �

0

Z u

0
�ð	Þeiwð	��Þf0ðwþv�Þdud	dw

(6)

where f0 is the electron distribution function in the limit
� ! 0. When � monotonically increases as a function of
time, f0 is the electron distribution function at t ¼ 0, i.e.,
the unperturbed one (usually a Maxwellian). However,
when � decreases to 0 after reaching high enough a value
to induce nonlinear electron motion, perturbation analysis
only makes sense if one uses for f0 the electron distribution
function in the limit t ! þ1, and integrates the electron
motion from t ¼ þ1 by taking advantage of the time-
reversal invariance of the dynamics. Then, as explained in
Ref. [6], f0 is nearly symmetric with respect to v� in the

interval jv0 � v�j � maxðVlÞ (as illustrated, for example,

in Fig. 4 of Ref. [8]). This implies that once trapped,
electrons never contribute to Imð�Þ again, even after being
detrapped. Equation (6) may therefore be simplified by
using for f0 the unperturbed distribution function and by
replacing Vl by maxðVlÞ. Such a simplification will be
implicitly used throughout the remainder of this Letter.
In order to derive an expression similar to Eq. (3) for
Imð�Þ, we now use the decomposition he�i’i � I1 þ I2
with

I1 ¼ f00ðv�Þ
Z �

0

Z u

0
�ð	Þ

Z
jwj�Vl

iweiwð	��Þdwd	du (7)

I2 ¼ i
Z
jwj�Vl

Z �

0

Z u

0
�ð	Þeiwð	��Þ

	 ½f0ðwþ v�Þ � wf00ðv�Þ�dwd	du: (8)

Provided that ðd�=d�Þ�¼0 may be neglected, integrating
Eq. (8) by parts yields, at first order in the time variations of
�,

Re ðI2Þ � 2
d�

d�

Z
jwj�Vl

f0ðwþ v�Þ � wf00ðv�Þ
w3

dw (9)

� �ðk�DÞ2ðd�=dtÞð@�r
1=@!Þ (10)

where the integral in Eq. (9) has to be taken in the sense of
Cauchy’s principal part when Vl ¼ 0.
Setting Vl ¼ 0 in Eqs. (7) and (9) just yields the linear

value of Imð�Þ. Then, �r
1 is just the adiabatic approxima-

tion of the linear value of Reð�Þ. As for I1, sinceRþ1
�1 iweiwð	��Þdw ¼ 2�@	�ð	� �Þ, where � is the
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FIG. 1 (color online). Panel (a), Imð�Þ calculated numerically
(blue solid line) and theoretically using for Imð�perÞ a 1st order

(green dashed line) or an 11th order (red dashed-dotted line)
perturbation analysis; panel (b), the nonlinear Landau damping
rate normalized to the plasma frequency from a 1st order (blue
solid line) or an 11th order (green dashed line) perturbation
analysis; panel (c), @!�

r
env normalized to its linear value and,

panel (d), the EPW group velocity (blue solid line) and phase
velocity (red dashed line) normalized to the thermal one.
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Dirac distribution, one easily finds I1 ¼ �f00ðv�Þ�ð�Þ.
Hence, in the linear limit, Imð�Þ ¼ ��ðk�DÞ�2f00ðv�Þ þ
�@!�

r
1, which has the same form as Eq. (3). Therefore,

Eq. (2) may indeed be cast in the same form as Eq. (1), with
�r
env ¼ �r

1 and � ¼ ��ðk�DÞ�2f00ðv�Þ=@!�r
1. The pre-

ceding linear value of � is just the Landau damping rate,
�L, in the limit �L � !pe. Hence, our linear calculation is

one derivation of the Landau damping rate which does not
resort on complex contour deformation.

In the nonlinear regime, and when V�1
l is much smaller

than the typical time scale of variation of�, ��, integrating

Eq. (7) by parts yields

Re ðI1Þ ¼ f00ðv�Þ½4V�1
l d�=d�þOðV�3

l d3�=d�3Þ�:
(11)

Hence, when Vl � ��1
� which, for a slowly varying wave

is typically the case when
R
!Bdt � 1, ReðI1Þ is nearly

proportional to d�=d�. As a consequence, Imð�Þ is nearly
proportional to � and, in Eq. (1), � � 0. Physically, the
decrease of � towards 0 is due to the trapping of the nearly
resonant electrons, which no longer contribute to � while
oscillating in the wave trough, just like in the situation
considered by O’Neil. When

R
!Bdt � 1, Imð�Þ may

therefore be approximated by Imð�Þ � �@!�
r
eff where

�r
eff is the real part of some effective susceptibility ob-

tained by removing the contribution of the deeply trapped
electrons. How to calculate @!�

r
eff very accurately, without

resorting to perturbation theory is explained in Ref. [6].
Note that the I1 term which, in the linear limit, yields the
damping rate �, renormalizes the term @!�

r
env in Eq. (1)

when
R
!Bdt � 1. In the strong damping limit, when

�L � �, @!�
r
env may then increase by more than 1 order

of magnitude, as illustrated in Fig. 1(c). As for the per-
turbative estimate Imð�perÞ of Imð�Þ, yielding Eqs. (7) and
(9), it is valid provided that

R
!Bdt & 1. Hence, in order to

get an expression of Imð�Þ whatever the wave amplitude,
we just need to connect the values of Imð�Þ obtained when
I!B

� R
!Bdt & 1, and when I!B

� 1, the following way,

Im ð�Þ � Imð�perÞ½1� YðI!B
Þ� þ �@!�

r
effYðI!B

Þ (12)

where Y is a function rising from 0 to 1 as I!B
increases.

From the preceding equation, we then derive

�r
env ¼ ð1� YÞ 	 �r

1 þ Y 	 �r
eff (13)

� ¼ �Y 	 ðk�DÞ�2ReðI1Þ=½�@!�
r
env�: (14)

To complete our calculation, we now need to provide a
practical formula for I1, simpler than Eq. (7), and to specify
a choice for the function Y in Eq. (12). Let us first consider
the case when � is a strictly positive constant, which is a
relevant limit since our theory is only for slowly varying
wave amplitudes. As shown in Ref. [6], when the EPW
grows exponentially with time, �@!�

r
env is very close to

Imð�Þwhenever I!B
> 6 and quickly diverges away from it

when I!B
< 6. Hence, Y must be such that Imð�Þ defined

by Eq. (12) quickly changes from Imð�perÞ to �@!�
r
env

when I!B
increases from a little less than 6 to a little

more than 6. This is the case if we choose YðxÞ ¼
tanh5½ðex=6 � 1Þ3�. Moreover, such a choice for Y yields
an excellent agreement between the theoretical values of
Imð�Þ and those inferred from test particles simulations
(not shown here). This is therefore the choice we make in
the general case. With such a choice, whenever � is not
negligible in Eq. (1), �r

env � �r
1, so that Eq. (14) my be

replaced by

� � �Y 	 ðk�DÞ�2ReðI1Þ=½�@!�
r
1�: (15)

As for I1, when � is a strictly positive constant, one easily
finds

ReðI1Þ
f00ðv�Þ ¼ �ð�Þ

�
�� 2tan�1

�
Vl




�
þ 2
Vl


2 þ V2
l

�
(16)

where 
 � �=k�D!pe. In order to generalize the preceding

formula, we use the expansion ReðI1Þ ¼ f00ðv�Þ½��ð�Þ þ
�I1� and find, from Eq. (16), �I1 � �ð4=3ÞðVl=
Þ3 when
Vl � 
, while when Vl � ��1

� Eq. (7) yields �I1 �
�4ðV3

l =3Þ
R
�
0

R
u
0

R	
0 �ð	0Þd	0d	du. Hence, while for an

exponential growing wave 
 � ��1d�=d� ¼
�=

R
�d�, we find that, when Vl � ��1

� , Eq. (16) still

holds in the general case provided that 
 is expressed in
terms of the time integral of �. When Vl � 
, Eq. (16)
yields ReðI1Þ � 4
�f00ðv�Þ=Vl, which is the same as

Eq. (11) provided that 
 ¼ ��1d�=d�. Having clarified
the actual meaning of 
 in Eq. (16), we may generalize this
equation by plugging into it


 � �ð�Þ ��ð�� �=VlÞR
�
���=Vl

�ðuÞdu (17)

which has the required properties 
 � �=
R
�d� when

Vl � ��1
� , and 
 � d�=d� when Vl � ��1

� . Equations

(15)–(17) therefore yield a practical expression for �
which, as shall be seen, is quite precise. The accuracy
can even be improved by using the high order perturbative
results of Ref. [6] to derive Imð�perÞ and therefore ReðI1Þ.
We will not show here the corresponding huge formulas,
but Fig. 1(b) illustrates the improvement.
The previous results are easily generalized to account for

one dimensional (1D) space variations of the EPW ampli-
tude. Indeed, by using a Fourier expansion of the charge
density then, as shown in Ref. [6], one finds

Im ð�Þ ¼ �þ �@!�
r
env � �½@k�r

env þ Reð�Þ=k� (18)

where � � E�1
0 @xE0 � E1

p@xEp, and � and �r
env are still

defined by Eqs. (13)–(17) except that I!B
, 
, and maxðVlÞ

need now be evaluated in the wave frame. As a conse-
quence, I!B

assumes its lowest values at the rear of the

plasma wave packet, making Landau damping more effi-
cient there, in agreement with the numerical results of
Ref. [9]. Plugging Eq. (18) into Eq. (1), we find, pro-

PRL 103, 155002 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

9 OCTOBER 2009

155002-3



vided that ½1þ Reð�Þ� � 0, the following expression for
the EPW group velocity, vg ¼ �@k�

r
env=@!�

r
env ¼ !=k�

2=½k@!�r
env�. It is noteworthy that, since in the nonlinear

regime �r
env � Reð�Þ, vg � d!=dk. Actually, since

@!�
r
env may reach values much larger than in the linear

limit, the nonlinear value of vg may get quite close to the

EPW phase velocity, as shown in Fig. 1(d).
We now compare our theoretical calculations against

direct 1D Vlasov simulations of SRS using the Eulerian
code ELVIS [4]. In our numerical simulations, which are
detailed in Refs. [4,7], the EPW results from the interaction
of a pump laser, entering from vacuum on the left (x ¼ 0)
and a small-amplitude counterpropagating ‘‘seed’’ light
wave injected on the right. Using a Hilbert transform of
the fields, one can numerically calculate the ratio
½Ed cosð�’Þ þ k�1@xEp�=Ep, which yields a first, numeri-

cal, estimate of Imð�Þ. From Vlasov simulations, one can
also extract the values of all the quantities, such as
I!B

; 
; . . . , which enter our theoretical formula for Imð�Þ.
Using these values, we calculate a second, theoretical
estimate, for Imð�Þ. Both these estimates are compared
in Fig. 1(a). The simulation results of Fig. 1 correspond to a
plasma with electron temperature, Te ¼ 5 keV, and elec-
tron density n ¼ 0:1nc, where nc is the critical density. The
total length of the simulation box is L ¼ 270�l, where
�l ¼ 0:351 �m is the laser wavelength, and the data of
Fig. 1 were measured at x ¼ 154�l. The laser intensity is
Il ¼ 4	 1015 W=cm2 while the seed intensity is Is ¼
10�5Il and the seed wavelength is �s ¼ 0:609 �m. As
can be seen in Fig. 1(a), there is very good agreement
between the theoretical and numerical values of Imð�Þ,
especially as regards the decrease of Imð�Þ from its linear
value. Clearly, as defined by Eq. (14), � is much more
complicated an operator than a plain damping rate.
However, as shown in Fig. 1(b), � is nearly constant before
abruptly dropping to 0 so that it may indeed be seen as a
damping rate.

The variations of � are very different from the oscillating
result found by O’Neil because, in this Letter, we consider
slowly varying waves inducing a nearly adiabatic electron
motion. As a consequence, electrons with the same initial
velocity are all trapped nearly simultaneously, which en-
tails a much more efficient and sudden reduction of Landau
damping than in the situation considered by O’Neil.
Moreover, in a very recent paper, Ref. [10], a simple model
was proposed to calculate the nonlinear damping rate
of a driven plasma wave, provided that the EPWamplitude
is uniform and strictly grows with time, a situation we
already investigated in Ref. [6]. The theoretical results
are compared against Vlasov simulations where the driv-
ing electric field is imposed, and constant. In Ref. [10],
� is calculated from Vlasov simulations using the formula,
� ¼ Ed cosð�’Þ=ðEp@!�

r
envÞ � �, where � is the EPW

growth rate and where @!�
r
env is derived using quasilinear

theory, which yields values of @!�
r
env significantly differ-

ent from our nonlinear ones whenever we predict � � 0.
Numerically (but not theoretically), � is found in Ref. [10]
to initially assume nearly constant values, which agrees
with our findings, and then to oscillate in time just as �
does, thus indicating that Ed=Ep has become nearly pro-

portional to � and, therefore, that Landau damping has
become negligible. From the data published in Ref. [10],
we infer that this happens when !Bt * 10, which is con-
sistent with our predictions. Hence, our theory seems to
agree with the numerical results of Ref. [10]. Moreover,
when testing our former theoretical results, Ref. [6], for a
growing wave, the authors of Ref. [10] actually solved
Eqs. (48) and (49) of Ref. [6], which only hold for small-
amplitude waves, and therefore did not take advantage of
our nonperturbative formulas.
In a 3D geometry, Imð�Þ is just the statistical average,

over all the transverse velocities ~v?, of the expression
Eq. (18), where all the quantities which enter the theoreti-
cal formulas for � and �r

env are evaluated in the frame
moving at velocity ð!=kÞ ~xþ ~v? with respect to the labo-
ratory frame. If the transverse extent of the EPW is much
less than its longitudinal one, then it is clear that, for the
same maximum wave amplitude, I!B

assumes smaller

values than for a plane wave. As a consequence, linear
theory is valid up to larger wave amplitudes in 1D than
in 3D.
In conclusion, we derived a very precise theoretical

estimate of Imð�Þ for a slowly varying electron plasma
wave that we compared against results obtained from
Vlasov simulations of SRS. From the expression of
Imð�Þ, we deduced the group velocity and the nonlinear
Landau damping rate, �, of the EPW and provided a
practical expression for � that may easily be generalized
to allow for 3D space variations of the waves.
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