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Abstract

The Eulerian Vlasov-Maxwell solverELVIS is described, and applied to electro-
static and laser-plasma interaction problems, in this chapter. The code treats the plasma
kinetically in one longitudinal dimension, either non-relativistically or relativistically,
and optionally including a Krook relaxation operator. The transverse dynamics com-
prise linearly polarized light waves and a cold, collisionless fluid. The kinetic equation
is solved via operator splitting, with 1D space and momentumadvections performed
by solution along characteristics with cubic spline interpolation. The Landau damp-
ing of a Langmuir wave, created as an initial density perturbation, is studied non-
relativistically and relativistically (the damping is reduced in the latter case for high
temperatures). Nonlinear trapping of electrons in the wave’s potential well, and the re-
sulting decrease of Landau damping, is also demonstrated. Simulations withELVIS of
backward stimulated Raman scattering (SRS) of a high-intensity laser, for parameters
appropriate to inertial confinement fusion, are presented.Kinetic inflation, or enhance-
ment, of the SRS reflectivity (due to trapping-induced damping reduction) above that
of coupled-mode, linear-damping calculations is shown in conditions relevant to single
laser speckle experiments at the Trident laser facility. Inaddition, the generation of
electron acoustic waves (and Thomson-like laser scattering off them) by the beating of
SRS-produced beam-acoustic modes is shown. The inclusion of a Krook operator, to
mimic transverse electron loss out of a finite speckle, imposes a threshold for inflation,
which gradually develops as resonant electrons complete& one bounce orbit before
being detrapped. The use of a broadband scattered-light seed very slightly decreases
the reflectivity below that given by a monochromatic seed.
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1. Introduction

Kinetic equations, which describe the evolution in phase space of particle distribution func-
tions, comprise some of the most fundamental descriptions of plasma dynamics. The rich
physics and extreme detail contained in such models is accompanied by the severe chal-
lenges involved in their theoretical and numerical solution. While fluid or other reduced
models can frequently be employed, there are important cases where a kinetic description
is necessary (and discussed in this book).

This present chapter is concerned with kinetic simulationsrelated to laser-plasma inter-
actions [1]. In particular, we will focus on physics relevant to stimulated Raman scatter-
ing (SRS), a resonant, three-wave parametric process wherea pump electromagnetic wave
(EMW), such as a laser, decays into a scattered EMW and a Langmuir wave (LW). SRS
is the basis of several applications, including laser-based particle acceleration [2] and the
backward Raman amplifier [3]. Moreover, for laser-driven inertial confinement fusion (ICF)
[4, 5] experiments like the National Ignition Facility (NIF) [6] and Laser Mégajoule (LMJ)
[7] to succeed, SRS and other laser-plasma instabilities must not be too active. Since SRS
removes energy from the pump laser, it can prevent the desired energy from being delivered
to the target, with the desired spatial and temporal behavior. NIF experiments on hohlraum
energetics in late 2009 showed significant (but acceptable)SRS from the “inner” cone of
beams [8].

The Langmuir wave in SRS resonates with electrons moving at the wave phase velocity,
which gives rise to linear Landau damping [9]. For a finite-amplitude wave, electrons can be
“trapped” in the wave’s (nearly) sinusoidal potential. This causes several nonlinear effects,
including the reduction in Landau damping [10], the downshift in LW frequency [11, 12],
the trapped-particle modulation instability [14], and Langmuir-wave self-focusing or fila-
mentation [15, 16]. The distortion of the electron distribution near the wave phase velocity
produces a population of energetic or “hot” electrons. Fromthe standpoint of achieving
ICF, these electrons can irreversibly pre-heat the fuel capsule and thereby reduce the fuel
compression (which degrades rapidly as entropy is added).

These processes are all fundamentally kinetic, which is a major motivation for kinetic
SRS simulations. Analytic progress has also been made in understanding and modeling
these effects. We will not attempt here to review recent theoretical and numerical work in
kinetic modeling of SRS, but will briefly mention a few highlights.

In this chapter, we will discuss kinetic simulations relevant to SRS, performed with a
1D Eulerian Vlasov-Maxwell solver calledELVIS. These include electrostatic studies with
no laser included, such as the linear and nonlinear damping of Langmuir waves. We shall
show that the damping rate in a high-temperature (17 keV) plasma is greatly reduced when
a relativistic instead of non-relativistic model is used. Electromagnetic simulations with
a pump laser will explore the enhancement or “inflation” of SRS due to Landau damping
reduction [17, 18], along with scattering off electron acoustic waves indirectly generated by
SRS. We explore the threshold for trapping to overcome relaxation (represented by a Krook



Eulerian-Lagrangian Kinetic Simulations of Laser-PlasmaInteractions 89

operator, intended to model multi-D particle side loss out of a laser speckle), along with the
role of bandwidth in the seed scattered light wave.

The chapter is organized as follows. Section 2 describes themodel and numerical
method of theELVIS code. The code is applied to electrostatic problems concerning the
non-relativistic and relativistic evolution of an LW in section 3. SRS simulations with and
without Krook relaxation are presented in section 4, which is followed by the conclusion.

2. ELVIS Equations and Numerical Method

ELVIS (which stands for Eulerian-Lagrangian Vlasov Integrator with Splines) is a se-
rial Vlasov-Maxwell solver, with kinetic longitudinal dynamics, cold-fluid transverse dy-
namics, and linearly-polarized transverse electromagnetic (e/m) fields. Time evolution is
“leapfrogged” in that the particle distribution functionf is known at whole timesteps, while
the transverse e/m fields are known at half steps. Operator splitting is used in time for the
kinetic equation, such that the phase-space advections (inspace and momentum) off are
done separately. These 1D advections are performed via the method of characteristics (also
called the semi-Lagrangian or Eulerian-Lagrangian method). Cubic splines are used to in-
terpolatef at the “foot” of characteristics, which are simply the particle orbits. The code is
similar to the parallel codeSAPRISTI [14, 19], and also to the non-periodic code described
in [20] (Ref. [21] details its periodic version).

ELVIS is a rather modest code by current standards, and is far from the cutting edge of
massively parallel, multi-D Vlasov codes using high-ordermethods. We are still able to
productively use it for physics problems.ELVIS is documented and applied extensively to
electrostatic problems and SRS in Ref. [22], as well as Refs.[23, 24, 18, 25, 26].

2.1. Model and geometry

ELVIS employs a simple 1D model which allows for SRS to be studied kinetically. Spatial
variations (gradients and wave vectors) are all in thex (longitudinal) direction. The parti-
cle dynamics inx are described by a kinetic equation, consisting of a collisionless Vlasov
operator which includes thex component of the~v×~B (ponderomotive) force from the trans-
verse electromagnetic fields. In addition, a Bhatnagar-Gross-Krook, often called simply a
Krook, operator is included [27], both to mimic dissipation(such as transverse sideloss out
of a localized laser speckle) and for numerical damping nearboundaries. The transverse
dynamics describe light waves linearly polarized iny, and the particles are described as a
cold, collisionless, non-relativistic fluid with ay velocity. Fig. 1 presents the geometry, with
profiles relevant to SRS in a finite system.
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Figure 1. Geometry of theELVIS code, illustrated for a laser backscatter problem in a finite
density profile.

The governing equations in normalized “ELVIS” units are:
[

∂t +vx∂x +Zs(Ex +vysBz)∂px

]

fs = νKs(x)
(

ns f̂0s− fs
)

, (1)

∂xEx = ρ ≡ ∑
s

Zsns, (2)

µs∂tvys = ZsEy, (3)

(∂t ±∂x)E± = −Jy ≡−∑
s

Zsnsvys, (4)

E± ≡ Ey±Bz. (5)

Note thatEy = (1/2)(E+ +E−) andBz = (1/2)(E+−E−). ELVIS units are such that length,
time, mass, charge, and number density are scaled tode0 = c/ωp0, 1/ωp0, me, e, andn0,
whereme is the electron mass,e> 0 the positron charge,n0 is a reference number density,
and ω2

p0 = n0e2/ε0me is the electron plasma frequency forn0. µs = ms/me and Zse are
the relative mass and charge of speciess; s= e for electrons,Ze = −1. We useELVIS or
physical SI units as convenient (which should be clear by context), and writeXelv or Xphys

to explicitly indicate units. We drop thessubscript when this leads to no ambiguity.
The 1D particle distributionfs(x, px, t) is normalized such thatns ≡

R

dpx fs is the
volumetric number density. Thex velocity vx is related to momentumpx by vx = ux/γx,
where~u = ~pphys/msc = ~pelv/µs is always unitless.γx = 1 or [1+u2

x]
1/2 for non-relativistic

or relativistic modes, respectively. The relativistic mode excludes transverse motion from
the Lorentz factorγx, and is thus only appropriate forvys≪ c. It is valid for studying strictly
1D relativistic dynamics. A number-conserving Krook relaxation operator is included, with
relaxation rateνKs(x) and a normalized equilibrium distribution̂f0s (usually set to a thermal
Maxwellian),

R

dpx f̂0s = 1.
To understand the transverse dynamics, we write the “full” distribution function as

F(x, px,Py, pz) = f (x, px)δ(Py)δ(pz) whereδ denotes the Dirac delta function,Py is the
canonicaly momentum, and we ignorez motion. Oury momentum equation is just the
conservation lawPy = 0, sometimes called Gabor’s theorem [28]. This is justified as fol-
lows. Consider a warm, non-relativistic fluid momentum equation with isotropic pressure,
in physical units:

m(∂t +~v·∇)~v = q(~E +~v×~B)−n−1∇p. (6)
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Introducing potentials via~E = −∇φ− ∂t~A, ~B = ∇×~A, and an equation of state such that
n−1∇p = ∇g(n), this becomes

∂t~P =~v×∇×~P−∇G (7)

with ~P≡ m~v+q~A the canonical momentum andG≡ 1
2mv2+qφ+g. Taking the curl of this,

we find
∂t~C = ∇× (~v×~C), ~C≡ ∇×~P. (8)

Clearly, if ~C = 0 initially, it remains so for all time. This obtains, for instance, if a plasma
initially free of transverse fields or motion is irradiated by a laser introduced from vacuum.
For our geometry,∇ → ∂x, andCz = ∂xPy remains zero for all time. IfPy at somex (say, far
from the laser) is zero for all time, thenPy(x, t) = 0.

We use the combinationsE± of the transverse e/m fieldsEy andBz since they each sat-
isfy a 1D advection equation which requires a single incoming boundary condition, suffers
no numerical reflection at the outgoing boundary, and is readily solvable by shifts of one
gridpoint if ∆x = c∆t (see Sec. 2.6.).

2.2. Structure of the timestep

We employ a “leapfrog” scheme wheref , and instantaneous functions of it liken andEx,
are stored at whole timestepstn = n∆t, and the transverse e/m fieldsE± are stored at half
stepstn−1/2. Only uniform grids are currently employed byELVIS, and treated here.vy is
needed at both whole and half steps, since it appears in both the f andE± time advance.
All spatial functions are known at whole gridpointsx j = j∆x. For electrostatic problems
(no transverse fieldsE± or vys), ∆t and∆x are unrelated, and there is no Courant stability
condition due to the way we advancef along characteristics. However, for problems with
transverse fields we require∆x = ∆t since we advanceE± by shifting them by exactly one
gridpoint every timestep (see Sec. 2.6.).

The complete time advance, from timet0 to t1, is given in Fig. 2, and is described as
follows:

1. S1/2 (stream): advancefs for ∆t/2, from fs,0 to f−−
s,1/2, via (∂t +vx∂x) fs = 0.

2. Using f−−
s,1/2, computens,1/2, ρ1/2 = ∑sZsns,1/2, andEx,1/2 from Gauss’ law. These

quantities have valid values att1/2 since theA and K operators both leavens un-
changed.

3. K1/2 (Krook): advancefs for ∆t/2, from f−−
s,1/2 to f−s,1/2, via ∂t fs = νKs(ns,1/2 f̂0s− fs).

4. M1 (Maxwell): AdvanceE± by ∆t from E±
−1/2 to E±

1/2 via (∂t ±∂x)E± =−Jy,0 where
Jy,0 = ∑sZsns,0vys,0.

5. Y1 (y accelerate): Advancevys for ∆t via vys,1 = vys,0 +(Zs/2µs)(E
+
1/2 +E−

1/2).

6. Findvys,1/2 = (1/2)(vys,0 + vys,1). This auxiliary variable is needed in thex force in
the Vlasov acceleration, but is directly dependent only onvys at whole timesteps.
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Figure 2. Diagram of oneELVIS timestep from timet0 to t1.

7. A1 (accelerate): advancefs for ∆t, from f−s,1/2 to f +
s,1/2, via (∂t + Fxs,1/2∂px) fs = 0

whereFxs,1/2 = Zs[Ex,1/2 +(1/2)vys,1/2(E
+
1/2−E−

1/2)] is thex force att1/2.

8. K1/2: advancefs for ∆t/2, from f +
s,1/2 to f−s,1, via Krook operator as in step 3.

9. S1/2: advancefs for ∆t/2, from f−s,1 to fs,1, via free streaming as in step 1.

10. Using fs,1, computens,1, ρ1, andEx,1 as in step 2.

The kinetic equation forf is solved via operator splitting [29, 30], first applied to Vlasov
codes by Cheng and Knorr [31]. Consider a generic time-evolution equation

d f
dt

= H f , H = H1+H2, (9)

where Hi is an operator on the variablesf . The exact solution for a timestep∆t is
U(∆t) f0 where U(t) = expHt and f0 is an initial condition (IC). The splitting theo-
rem states that given two approximate operatorsUa

i which are second-order accurate, i.e.
(Ua

i (∆t)−Ui(∆t)) f0 = O(∆t3), we can construct an operatorUa which is a second-order
accurate approximation toU via

Ua(∆t) = Ua
1 (∆t/2)Ua

2 (∆t)Ua
1 (∆t/2). (10)

This can be verified by computingUa(∆t)−expH∆t for non-commutingHi (which is gener-
ally the case for the operators we consider), and is related to the Baker-Campbell-Hausdorff
formula for Lie groups.

The method is directly extended to multiple operators, e.g.for three operators we have

Ua(∆t) = Ua
1(∆t/2)Ua

2 (∆t/2)Ua
3 (∆t)Ua

2 (∆t/2)Ua
1 (∆t/2). (11)

This is precisely the case for our kinetic equation, which involves operatorsS=Ua
1 , K =Ua

2 ,
andA = Ua

3 for free streaming, the Krook operator, and acceleration respectively. In the
timestep notation used above, the kinetic equation is splitas follows:

Ua(∆t) = S1/2K1/2A1K1/2S1/2. (12)



Eulerian-Lagrangian Kinetic Simulations of Laser-PlasmaInteractions 93

2.3. f advection: cubic splines

The space and momentum advections in the kinetic equation are both performed as separate
1D shifts along characteristics (called a semi-Lagrangianor Eulerian-Lagrangian method).
For concreteness consider thex advection (performed once for eachv) ∂t f +v∂x f = 0, with
solution f (x, t + ∆t) = f (x− v∆t, t). Let f n

j = f (x j , tn), x j = j∆x, andtn = n∆t. We must

find f n+1
j = f (x j −v∆t, tn) given f n

j at timetn. Sincex j −v∆t is in general not a gridpoint,
we interpolate to find its value. Characteristic methods areusually implicit, in that a set of
equations must be solved to carry out the interpolation, andalso have no Courant stability
condition (see the von Neumann analysis below), since a shift by more than one gridpoint
merely requires the interpolation to be done about anx location farther fromx j (of course,
accuracy suffers with shifts over many gridpoints). That is, we always interpolate forf n+1

j
between known values off n

j , and never extrapolate as happens in methods like first-order
upwinding whenv∆t > ∆x (this is why such methods have a Courant condition).

ELVIS uses cubic spline interpolation, as detailed in App. A.4.3 of [22]. Cubic spline
and cubic B-spline interpolation (for uniform and non-uniform grids) is discussed and ap-
plied to Vlasov and fluid equations in Ref. [32]. Ref. [33] contains a general discussion
of spline and other interpolation applied to advection problems, including details on their
numerical dispersion and dissipation. The advantages of cubic splines are low numeri-
cal dispersion and dissipation, and the low computational cost of the resulting tridiagonal
system of equations. Its drawbacks include that the interpolant can overshoot, or exceed
extreme values of the givenf j points (for instance, the interpolant of an initially positive
set of f j can be negative). Moreover, semi-Lagrangian advection does not satisfy alocal
discrete conservation law, as do finite-volume, flux-conservative methods. This problem is
not specific to spline interpolants.

ELVIS currently uses only uniformx and px grids, which give high-order accuracy but
are wasteful in that the finest resolution needed on each gridmust be used everywhere. In
our particular applications the momentum resolution needsto be highest around the plasma-
wave phase velocity where electron trapping occurs, and substantial savings could be had
by using a coarser mesh elsewhere. Some results below, namely the tridiagonal system Eq.
(21), are only valid for uniform grids.

Cubic spline interpolation entails expressingf (x) as a cubic polynomialFj(x) about
each gridpoint:

Fj(X) = f j + p jX +sjX
2+g jX

3 (13)

whereX = (x− x j)/∆x. Fj(0) = f j by construction, and we require continuity atx = x j

of Fj and its first two derivatives with the neighboring interpolant Fj−1. These matching
conditions give the following system:

f j−1 + p j−1+sj−1+g j−1 = f j , (14)

p j−1 +2sj−1 +3g j−1 = p j , (15)

sj−1 +3g j−1 = sj . (16)

Taking linear combinations of these equations at nearby gridpoints gives a tridiagonal sys-
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tem for the unknowns in terms of the knownf j ’s:

p j+1 +4p j + p j−1 = −3 f j−1 +3 f j+1, (17)

sj+1 +4sj +sj−1 = 3 f j−1−6 f j +3 f j+1, (18)

g j+1 +4g j +g j−1 = − f j−1 +3 f j −3 f j+1+ f j+2. (19)

Consider now interpolation forx advection withv < 0 for definiteness, involving a
shift δ = |v|∆t. We assume∆ ≡ δ/∆x < 1 for convenience (as discussed above, shifts by
more than∆x pose no difficulty). We approximate the new value off j at time t + ∆t,
f n+1

j = f̄ j ≡ f (x j + δ), by

f̄ j ≈ Fj(x j + δ) = f j + p j∆ +sj∆2 +g j∆3. (20)

We can form a tridiagonal system for thēf j , all shifted by the same∆ from x j (valid only
for a uniform grid), in terms of the knownf j , by taking f̄ j−1 +4 f̄ j + f̄ j+1:

f̄ j−1 +4 f̄ j + f̄ j+1 = a−2 f j+2 +a−1 f j+1 +a0 f j +a1 f j−1, (21)

where

a1 = 1−3∆ +3∆2−∆3, (22)

a0 = 4−6∆2 +3∆3, (23)

a−1 = 1+3∆ +3∆2−3∆3, (24)

a−2 = ∆3. (25)

For v > 0 the logic is similar, and a unified system for both signs ofv is

f̄ j−1 +4 f̄ j + f̄ j+1 = a−2 f j−2σ +a−1 f j−σ +a0 f j +a1 f j+σ. (26)

with σ ≡ signv= ±1. Thea’s are definedexactly as for v< 0, with δ = |v|∆t in both cases.
The numerical dispersion and dissipation of advection by interpolation can be studied

by a von Neumann analysis. We consider the time evolution of one spatial harmonic of
wavelength 2π/k by writing f n

j = gn exp[ikx j ]. Substituting into Eq. (26), we find

g· [4+2cosα] = a−2e−2iσα +a−1e−iσα +a0 f j +a1eiσα, (27)

whereα ≡ k∆x. The corresponding solution of the advection PDE(∂t + v∂x) f = 0 is f =
expik(x− vt), which gives an analytic amplification factorgan = exp[−ikvt]. Numerical
dissipation or instability is indicated by|g| 6= 1 (note|gan|= 1), and the phase errorφ in one
timestep is given byφ = arg[g/gan]. Figure 3 presents the dissipation forα ∈ [0,π], or half
the Nyquist range|k| ≤ π/∆x. The following symmetry relations apply:|g(−α)| = |g(α)|,
|g(σ = −1)| = |g(σ = 1)|, and|g(∆)| = |g(1−∆)|. The dissipation is quite small for small
α or ∆. In all cases|g| ≤ 1, which means the method is numerically stable and has no
Courant condition (recall our analysis is for∆ < 1, but∆ > 1 is simply handled by basing
the interpolant off a a position shifted by more than one gridpoint). Also,g(k = 0) = 1,
indicating that the mean value off is unchanged. That is, the “mass”

R

dx f is globally
conserved (although in general it is notlocally).
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Figure 3. Magnitude of numerical amplification factorg for advection by cubic spline
interpolation, Eq. (27). The same plot applies for either choice ofσ = signv, for α →−α,
and for∆ → 1−∆.
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Figure 4. Numerical phase errorφ = arg[g/gan] in one timestep, forσ = signv = 1 for
advection by cubic spline interpolation, Eq. (27). Note that φ(−α) = −φ(α), φ(σ = −1) =
−φ(σ = 1), andφ(1−∆) = −φ(∆).

Figure 4 plots the phase errorφ, and several anti-symmetry relations forφ are given
in the caption. The error is quite small away fromα = π, so that as long as the features
being advected are well-resolved their dispersion is accurate. The figure is repeated on a
logarithmic scale in Fig. 5. It is interesting thatφ assumes an almost universal form when
α is not too large and∆ departs from 1/2.

So far we have described the solution for interior points andneglected boundary condi-
tions (BCs).ELVIS uses periodic BCs inx, even though we frequently study non-periodic
problems like SRS. Following Fig. 1, the periodicity domainin x is xL to xR, with f ≡ 0 in
the exterior “moat” regions where transverse e/m waves propagate in vacuum to the final
boundariesx= 0,L. To make the problem effectively periodic, we use finite density profiles
and large Krook rates in boundary regions. Periodic BCs are both easy to implement and
maintain global number conservation. Early work withELVIS collected escaping particles
on boundary plates [23], but this proved impractical due to large localized fields that de-
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Figure 5. Figure 4 on a logarithmic scale.

veloped. Particle re-emission from a thermal bath is another possibility. The momentum
shift uses open boundaries, where we assumef = 0 outside the finitepx grid. This leads
to a loss of particles, and can be remedied by replenishing from a thermal Maxwellian bath
after thepx shift. In this chapter, no bath is used in the electrostatic problems (but number
conservation is still excellent, see Fig. 8), while it is used in the SRS runs.

2.4. Krook Operator

We seek a Krook time-advance operatorŨK that solves∂t f = νK(nf̂0− f ) to at least second-
order accuracy. This equation leaves the densityn unchanged, as is readily seen by inte-
grating it overpx. We can thus use the exact solution to this linear equation:

f (t) = f (0)e−νK t +nf̂0(1−e−νKt). (28)

It is important that distributions, such aŝf0, be normalized numerically and not analyti-
cally. That is,

R

dpx f̂0, as computed on the discretepx grid and with the method used to
numerically compute density, must be unity. Otherwise,ŨK will steadily change the num-
ber density over time. The same comment applies to setting upf to have a desired initial
density. For finite-geometry runs, we use a largeνKs in “damping regions” (see Fig. 1) at
the edges to absorb plasma waves generated inside the plasma(e.g., by SRS) and to damp
fluctuations generated in the density profile ramps.

2.5. Solving forEx

The longitudinal electric fieldEx is found directly fromρ and Gauss’ law, Eq. (2), and
not via the potentialφ, although we frequently findφ for diagnostic purposes. We findEx

by either a Fourier or finite-difference method. We use the Fourier method for essentially
periodic problems, such as a wave over one or several wavelengths, and the finite-difference
method for finite problems like SRS (the gradual evolution ofwave envelopes over many
wavelengths). In either case, boundary conditions (BCs) must also be specified. These and
various solution methods are discussed on pp. 75-79 and App.D of Ref. [34].
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For a periodic system fromx = 0 to L, we haveEx(0) = Ex(L). Integrating Gauss’ law
from 0 to L givesEx(L)−Ex(0) = Q whereQ =

R

dx ρ is the total charge in the system.
Q must be 0 forEx periodic, so we can only apply periodic BCs for systems with no net
charge. For periodic BCs we must impose an additional condition to set the absolute level
of Ex. One choice is to eliminate DC fields by shiftingEx so it has zero average; this is also
called a “short-circuit” BC . It is equivalent to demandingφ be periodic, which impliesEx

has zero average (analogous to the relation betweenρ andEx for periodic BCs).
Our finite-difference solution of Gauss’ law involves finding Ex at fictitious half grid-

points and then averaging to findEx at full gridpoints. In particular,

Ex, j+1/2−Ex, j−1/2 = ∆x ρ j , Ex, j =
1
2
(Ex, j+1/2 +Ex, j−1/2). (29)

This method is equivalent to findingφ with the usual 3-point centered stencil forφ′′ and
thenEx by a centered difference. Our method eliminates the need to solve a tridiagonal
system.

To find the accuracy of this method, consider interior points(neglect boundaries), and
for full gridpoints letEx, j = Ẽx, j + ej whereEx, j is our numerical approximation,̃Ex(x) is
the trueEx, ande(x) is the error (̃Ex ande are continuous functions ofx). Assumingρx, j is
exact, we find by Taylor expanding thatej = (∆x2/12)∂xxẼx, j . The method is thus second-
order accurate in∆x. It is also highly localized in space. For a unit impulseρ j = δ jk, we
haveEx, j = (0,∆x/2,∆x) for ( j ≤ k−1, j = k, j ≥ k+1). The full change inEx thus occurs
over a few gridpoints.

Our Fourier method for findingEx, appropriate for periodic systems, utilizes “ex-
act” differentiation in wavenumber space. That is, with theFourier transform f̂ (k) =
R

dx e−ikx f (x) for the field f , Gauss’ law givesikÊx = ρ̂ for k 6= 0. Êx(k = 0) is the av-
erage value ofEx, which must be determined by BCs.φ is simply found fromÊx = −ikφ̂.
This “exact” approach is spectrally accurate but highly nonlocal, in thatEx at onex is influ-
enced byρ at allx (with the influence dropping off weakly). This is an effective approach to
intrinsically periodic problems, but undesirable for, say, envelope evolution like in SRS. A
more spatially local differentiation operator thanik can be used, at the expense of spectral
accuracy, but we do not adopt one. See App. E of Ref. [34] for anilluminating discussion
of these issues.

2.6. Advance of transverse fieldsE±,vys

We now turn to the time advance of the transverse fieldsE± and vys, performed by the
operatorsM1 andY1. For simplicity we consider only electrons (vys → vye). We must
advanceE± from timesteptn−1/2 to tn+1/2, andvye from tn to tn+1. The relevant PDEs in
ELVIS units are

(∂t ±∂x)E
± = nevye, (30)

∂tvye = −1
2
(E+ +E−). (31)

ne is held constant attn, as is appropriate for our overall timestep. To obtain the dispersion
relation for the continuous PDEs, first verify(∂tt − ∂xx)Ey = ne∂tvye = −neEy using E+
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Figure 6. Dispersion relation for transverse dynamics. Thesolid curve is the exact, contin-
uous resultω2

em = ω2
p + c2k2. The dashed curve is the numerical resultωnum, Eq. (38), for

a = ωp∆t = 1.

and E− (it is useful to factorize∂tt − ∂xx = (∂t + ∂x)(∂t − ∂x)). Then Fourier analyzing
by assuming expi(kx− ωt) space-time variation for all fields, we find in physical units
ω = ωem≡ ωp[1+(kde)

2]1/2 with de ≡ c/ωp. This is the usual dispersion relation of light
waves in a cold plasma.

For the discrete time advance, we shiftE± along the appropriate vacuum characteristics
(x = x0± ct) by exactly one gridpoint. This requires∆x = c∆t, and this constraint obtains
whenever transverse fields are used. ForJy = 0, this gives the exactE±. The sourceJy is
evaluated at the midpoint of the characteristic.vye is advanced by the midpoint rule. Thus,

E+,n+1/2
j = E+,n−1/2

j−1 +nn
e, j−1/2vn

ye, j−1/2∆t, (32)

E−,n+1/2
j = E−,n−1/2

j+1 +nn
e, j+1/2vn

ye, j+1/2∆t, (33)

vn+1
ye, j = vn

ye, j − (∆t/2)(E+,n+1/2
j +E−,n+1/2

j ), (34)

vn
y, j−1/2 = (1/2)(vn

j−1 +vn
j ). (35)

We find the numerical dispersion and dissipation of this method via a standard von
Neumann analysis. Assume all fields vary as expi(kx−ωt) on the discrete grids, and write
them as

(E+,E−,vye)
n
j = (E+,E−,V)expi(k j∆x−ωnumn∆t). (36)

We insert these into the discrete time-advance equations, solve for E
± in terms ofV, and

then substitute into Eq. (34) to obtain the numerical dispersion relation

D = 0 = a2 +(a2−4)cosk∆x+4cosωnum∆t; a≡ ωp∆t. (37)

This is readily solved forωnum:

ωnum∆t = arccos
[

−a2/4+(1−a2/4)cosakde
]

. (38)
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Figure 7. Phase error|ωnum/ωem−1| of the numerical time advance for transverse dynam-
ics. The solid, dashed, and dotted curves are fora = ωp∆t = 0.1, 0.25, and 1, respectively.

We imposed∆x = c∆t. For realk, ωnum is real (no numerical dissipation) as long as
|cosωnum∆t| ≤ 1. This obtains as long asωp∆t ≤ 2. The algorithm has no dissipation
if this condition is met.

ωnum(k) is shown in Fig. 6 forωp∆t = 1. Even for this rather large timestep the
agreement is quite good. We only need to consider|k| ≤ π/∆x (the Nyquist value); since
D(−k) = D(k) we only plotk > 0. Taylor expanding Eq. (38) for∆t small, we find

ωnum

ωem
≈ 1+

1
24

1− (kde)
2

1+(kde)2 a2 +O(a4). (39)

We thus recover the correct continuous light-wave dispersion relation for smalla. Figure
7 plots the dispersion error. Note from Fig. 6 that, fora = 1, ωnum = ωem for k∆x ≈ 1.
There is generally ak where the phase error is zero, corresponding to the dips in Fig. 7. We
see from Eq. (39) that theO(a2) error vanishes forkde = 1 (but theO(a4) error does not;
kde = 0 is thus approximately whereωnum = ωem). kde = 1 corresponds tok∆x = a, which
is about where the dips in Fig. 7 occur.

The discretization (or truncation) error of the transversetime advance isO(a2). To see
this, we can form the residualR (which is identically zero) for the time advance ofE+ (an
analogous calculation applies forE−):

Rn
j−1/2 ≡ E+,n+1/2

j −E+,n−1/2
j−1 − (N∆t/2)(vn

ye, j−1 +vn
ye, j ). (40)

We useN = nn
e, j−1/2 and neglect its variation in space and time (which is of secondary

importance for light waves). WriteE+ = Ẽ+ +e+ andvye = ṽye+ev whereẼ+, ṽye are the
true fields ande+,ev the error fields (both true and error fields are continuous functions, and
not just known on the discrete grid). LetRn

j−1/2 = R̃+Re whereR̃ andRe contain true and
error fields, respectively. Taylor expanding yields

R̃=
[

(∂t + ∂x)Ẽ
+−Nṽye

]

∆t +
[

(∂t + ∂x)
3Ẽ+−3N∂xxṽye

]

∆t3 +O(∆t5). (41)
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The same expression, with true fields replaced by error fields, obtains forRe. All fields
are evaluated attn andx j−1/2, so we suppress the index labels. The continuous PDEs Eqs.
(30-31) make theO(∆t) term in R̃ zero. Thus, the totalR contains anO(∆t) combination
of error fields, which must balance anO(∆t3) combination of true fields. The error fields
are thereforeO(∆t2). Note that for no plasma (N = 0), Eq. (30) annihilates the(∂t + ∂x)

3

operator, so that̃R would beO(∆t5). In fact R̃ = 0 for N = 0 since theE± advance is
exact in this case. An analysis of thevye time advance, analogous to Eq. (29) forEx,n+1/2,
shows it entailsO(∆t) error fields balancingO(∆t3) true fields, which again is consistent
with O(∆t2) errors.

3. Electrostatic application: Langmuir-wave dispersion

As a demonstration ofELVIS on an electrostatic problem (no transverse fields), we choose
the evolution of a Langmuir wave (LW) from an initial densityperturbation. This illustrates
the linear and nonlinear (particle trapping) physics of plasma waves. In addition, the so-
called “recurrence problem” of Eulerian Vlasov codes is revealed (see below). The domain
is spatially periodic, of length one wavelengthλ = 2π/k, andEx is found by the Fourier
method with short-circuit BCs. Ions form a uniform immobilebackground, andνK = 0 (no
Krook operator). The electron distribution initial condition (IC) is

fe(t = 0) = f0(px)(1+ εsin(kx)). (42)

f0 is an equilibrium 1D distribution, either

f NR
0 =

n0

pTe(2π)1/2
e−p2

x/2p2
Te or (43)

f R
0 =

n0

2µmecK2(µ)
(1+wx)e

−wx. (44)

pTe≡ mevTe with vTe≡ [Te/me]
1/2 the electron thermal speed,µ≡ mec2/Te, K2 is the mod-

ified Bessel function of the second kind and order two, andwx ≡ µ[1+u2
x]

1/2. f NR
0 and f R

0
are used, respectively, for non-relativistic and relativistic runs. The only other change be-
tween the two modes is the formula forγx in the advectivevx∂x term in the Vlasov equation.
f R
0 =

R

duyduz fJ is an ad-hoc 1D reduction of the 3D Jüttner, or relativisticMaxwellian,
distribution fJ:

fJ =
n0µ

4π(mec)3K2(µ)
e−µγ. (45)

γ = [1+u2]1/2 is the full, 3D Lorentz factor.
The IC Eq. (42) produces a standing wave, or two traveling waves of amplitudeδn =

n0ε/2 with phase velocities±vp wherevp ≡ ω/k andω is the normal-mode real frequency
corresponding tok (there is transient behavior associated with strongly-damped roots to
the dispersion relation, which vanish after∼ one plasma period). As long as the trapping
regions in velocity,±(vp±vtr), of the two waves are separate, the dynamics are essentially
that of two non-interacting traveling waves.vtr = 2(ωp/k)(δn/n0)

1/2 is thehalf-width of
phase space vortex formed by one traveling wave.
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The non-relativistic linear theory of LWs is well-known, although the relativistic theory,
using Eq. (45), has recently been the subject of renewed interest [35]. We merely state the
non-relativistic dispersion relationεNR = 0 (see Ref. [35] for details) where the dielectric
εNR is

εNR≡ 1− 1
2(kλD)2Z′(ζ) ζ ≡

vC
p

vTe
√

2
. (46)

λD = vTe/ωp is the Debye length,Z is the plasma dispersion function, andZ′(ζ) = dZ/dζ.
vC

p = ωC/k is the complex phase velocity, computed for realk but complexωC. We usually
find ωC for real k that satisfies the dispersion relation, and takeω = Re ωC as the real
frequency; the context should make clear whether we mean thereal or complexω. The
relativistic Landau damping rate was calculated analytically in Ref. [35], and found to be
significantly less than the non-relativistic value for hightemperatures. This fact, along with
the complete vanishing of Landau damping for super-luminalphase velocities (vp > c), was
found earlier by a quantum statistical-mechanics calculation [36].

The recurrence problem in Eulerian Vlasov codes is a sign of filamentation, or the
transport of structure to finer velocity scales as time progresses. For the non-relativistic IC
Eq. (42), the force-free Vlasov equation(∂t +vx∂x) f = 0 can be solved along characteristics
to give f = f0(vx)[1+εsink(x−vxt)]. The velocity “wavenumber”kt grows with time. The
exact densityn decays rapidly towardn0 due to phase mixing, and is

n/n0 = 1+ εsin(kx)exp[−(vTkt)2/2]. (47)

On a fixedvx grid, the evolution is distorted oncekt approaches the grid spacing. In par-
ticular, on a uniform gridvx, j = j∆v, ktvx, j = 2π jM (M integer) whenevert = Mtrec where
trec≡ λ/∆v is the recurrence time. At these times, sink(x−vx, j t) = sinkx on the discretev
grid, and the numerical density equalsn0.

As shown in Fig. 9, recurrence occurs for periodic problems with forces included, even
when the initial wave has Landau damped to a small fraction ofits initial amplitude by
trec. This is despite the weak numerical damping of high-k modes in cubic spline advection
(see Fig. 3), which is ineffective over the time it takes structure to “march up” to the grid
spacing. We do not take any special action to prevent filamentation or recurrence, although
techniques which artificially damp fine-scale velocity structure have been used by others,
e.g. including a numerical hyper-viscosity∂(4)

v f [37, 38]. Instead, numerical parameters are
chosen sotrec exceeds times of interest, such as the time for Landau damping or trapping to
occur in the initial-value problems of this section, or the decoherence time of SRS (taken
to be an inverse of the growth rate) in laser-plasma problems. We have seen no signs of
recurrence in SRS problems.

O’Neil [10] studied analytically the initial-value problem for Langmuir waves, which
we have just described. He solved for particle orbits in a single traveling wave of constant
amplitude, including both those trapped in the wave potential well and those that are not
(the so-called passing particles). From this the rate of wave energy loss is obtained, which
shows the collisionless (Landau) damping rate oscillates and decays over several bounce
periodsτB ≡ 2πω−1

p (n0/δn)1/2 of the deeply trapped particles. This reduction in Landau
damping leads to the “inflation,” or increase, of SRS above linear predictions [17, 18].
Later, Morales and O’Neil analyzed the nonlinear frequencydownshift in a similar way
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Figure 8. Change in total electron number for non-relativistic Langmuir-wave runNR1 with
kλD = 0.3 andε = 10−4.

[11]. Dewar [12] calculated the frequency shift for both a suddenly-created wave (like in
the initial value problem) and an adiabatically driven one.This shift may act as a saturation
mechanism for SRS, and leads to rich multi-D physics [15, 39,16, 13].

We first present a non-relativistic problem, which we call run NR1, with kλD = 0.3 and
ε = 10−4. For the non-relativistic case, the background density andtemperature scale out
of the problem. The linear, analytic, non-relativistic dispersion relation isεNR = 0 with εNR

from Eq. (46). ForkλD = 0.3, this givesω = 1.16ωp, vp = ω/k = 3.87vTe, and an energy
damping rateν = 0.0252ωp. We use numerical parameters∆x = λ/32, ∆t = ω−1

p /32, and
a momentum grid extending to±8pTe with ∆p/pTe = 16/256= 0.0625. We intentionally
do not use an excessively fine resolution, to show that high accuracy can still be achieved.
The recurrence time istrec = 335ω−1

p . Particle number conservation, shown in Fig. 8, is
excellent, even though open boundaries inpx are used (recall from Sec. 2.3. that cubic
spline interpolation with periodic BCs, which we use inx, conserves global number). The
total wall runtime on one Opteron CPU was about 40 ns per advance of each phase-space
cell in the distribution (grand total ofNtNxNp); this is typical of small electrostatic runs, but
is usually several times larger for SRS problems.

The kinetic, electrostatic, and total energiesWk,WE,Wt , summed over the simulation
domain, are defined as

Wk ≡
Z

dxdpx wk f ; WE ≡
Z

dx
ε0

2
E2

x ; Wt ≡Wk +WE. (48)

wk is the single-particle kinetic energy:wk = mev2
x/2 or mec2(γx− 1) for non-relativistic

and relativistic dynamics, respectively. Figure 9 plotsWE and the change inWk for run
NR1, averaged over one plasma period.WE decays as the wave Landau damps, and the lost
field energy appears as particle kinetic energy. This process reverses aroundtrec, and the
wave energy grows until reaching about half its initial value aroundt = 400ω−1

p . Imperfect
reconstruction ofWE(t = 0) is due to either numerical dissipation or the inclusion of forces.
Figure 10 displaysWE on a log scale, from which the energy damping rate is found by fitting
a line betweentωp = 25− 230 to beνnum = 0.0251ωp (which is the slope of the straight
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Figure 9. Change in kinetic energyWk(t)−Wk(0) (solid curve), and electrostatic energy
WE (dashed curve), for runNR1. The rebound ofWE, peaking att ≈ 400ω−1
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Figure 10. Electrostatic energyWE (solid curve), and change in total energyWt (dashed
curve), for runNR1. The straight line of open circles corresponds to linear energy damping
exp[−νnumt] with νnum = 0.0251ωp.
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Figure 11. Electrostatic energyWE for runNR2. The initial density perturbation isε = 0.01,
giving an initial bounce period ofτB = 88.6ω−1

p . Rebound of the wave energyWE occurs
later than O’Neil’s result of≈ 1.25τB = 111ω−1

p since the initial linear damping decreases
δn and increasesτB. The spike near 300ω−1

p is related to recurrence.

line of open circles). This compares very well with the analytic valueνanal= 0.0252ωp. In
addition, the change in total energyWt is shown in Fig. 10 to be much less thanWE and the
change inWk.

To demonstrate trapping nonlinearity, we performed the runNR2 which differs fromNR1
only in thatε = 0.01 instead of 10−4. This gives a traveling wave amplitude ofδn= 0.005n0,
a trapping half-width ofvtr/vTe = 0.471, and an initial bounce periodτB = 88.6ω−1

p . Af-
ter initially decaying, the wave energy rebounds and reaches a second peak near the time
150ω−1

p (see Fig. 11). According to the O’Neil theory, the wave should reach its second
peak around 1.25τB, which is about 111ω−1

p using the initialτB. However, this calculation
assumes a fixed wave amplitude. Since the wave initially damps, it takes slightly longer
for trapping to occur. Vortex formation in phase space due totrapping is shown in Fig. 12,
where the distributionfe is plotted att = 122ω−1

p , after the wave has started to rebound.
The vortex is centered near the linear phase velocityvp = 3.87vTe of the right-moving trav-
eling wave. Although it is possible to use higher resolutionand display fine details offe,
we obtain accurate results with this relatively coarse meshing.

We consider now a relativistic run,Rel1, which is analogous toNR1 (kλD = 0.3,
ε = 10−4) except the relativistic IC and Lorentz factorγx are used. We also must specify
Te (more precisely,Te/mec2), as this does not scale out of the relativistic problem as itdoes
in the non-relativistic case. To demonstrate the relativistic reduction of Landau damping,
we takeTe = 17.033 keV (µ = mec2/Te = 30). The numerical parameters are∆x = λ/64,
∆t = 0.0909ω−1

p , px runs from±1.54mec, and∆p/mec = 2 · 1.54/512= 0.00602. The
recurrence time istrec ≈ 635ω−1

p , beyond the run end. Figure 13 depicts the field energy
WE, which decays at approximately the rateνnum = 0.00258ωp. The relativistic, analytic
theory of Ref. [35] gives a linear energy damping rate ofνanal= 0.00316ωp, which is 22%
larger than the numerical result. The discrepency may be dueto the reduction of the Vlasov
equation or distribution function from 3D to 1D in momentum.This is complicated rela-
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Figure 12. Electron distributionfe for run NR2 at the time 122ω−1
p , after the wave energy

has started to rebound. The phase-space vortex is due to electron trapping and is centered
on the right-moving traveling wave phase velocity ofω/k = 3.87vTe.

tivistically by the fact that the Lorentz factorγ, which appears in both the Vlasov equation
and the Jüttner distribution, couples all three momentum components in a way that does not
factor. Our treatment of the advectivevx∂x f term in particular may need refinement: the
use inELVIS of vx/c = ux/γx with γx = [1+ u2

x]
1/2 entails treating the distribution as cold

in the transverse momenta. Nonetheless, the two relativistic damping rates (numerical and
analytic) qualitatvely agree, in that they are much smallerthan the non-relativistic result of
0.025ωp.

4. Application to Raman scattering

This section presents simulations of stimulated Raman scattering (SRS) withELVIS. In
SRS, a pump light wave, which we label mode 0 (such as a laser, contained inE+), decays
into a scattered light wave (mode 1, contained inE−) and a Langmuir wave (mode 2). This
resonant, three-wave process satisfies the phase matching conditions ω0 = ω1 + ω2 and
~k0 =~k1 +~k2, which reflect conservation of energy and momentum, respectively. We focus
on backscatter inELVIS geometry, where~ki = ki x̂, k0,k2 > 0, andk1 < 0. We use the finite
geometry illustrated in Fig. 1, with a large Krook rateνK at the density ramp-ups to prevent
fluctuations. A pump laser is incident from the left edge, with intensityI0L (we use subscript
L andR to denote quantities at the left and right edge). Due to the low numerical noise in
Eulerian Vlasov codes likeELVIS, SRS generally does not develop “spontaneously” from
this system. To initiate SRS, we include a seed scattered light wave on the right edge with
intensityI1R and wavelengthλ1s.

We first present kinetic inflation of SRS and the development of and scattering off elec-
tron acoustic waves in Sec. 4.1. The suppression of trappingby a Krook operator, intended
to mimic transverse speckle loss, is examined in Sec. 4.2. Section 4.3 shows the insensitiv-
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Figure 13. Electrostatic energyWE for relativistic runRel1 (log scale), with initial density
perturbationε = 10−4 as in runNR1. The straight line of open circles corresponds to linear
energy damping exp[−νnumt] with νnum = 0.00258ωp.

ity of the SRS reflectivity to the use of a Gaussian broadband (instead of monochromatic)
scattered-light seed. Ref. [18] covers the material of Sec.4.1 in detail, and Ref. [40] presents
aspects of all three sections.

4.1. Kinetic inflation and electron acoustic scatter (no Krook operator)

As a first example, we demonstrate the kinetic inflation, or enhancement, of SRS due to
electron trapping and the resulting decrease in Landau damping [17, 18]. For the run se-
ries “SRS1”, we take a laser with vacuum wavelengthλ0 = 527 nm (frequency-doubled
light for Nd:glass lasers), a homogeneous plasma withne/ncr = 0.025 andTe = 500 eV
(ncr ≡ ε0meω2

0/e2 is the critical density whereωp = ω0). These parameters were also stud-
ied in Ref. [18] and are motivated by single hot spot experiments done at the Trident laser
facility [41, 42], which explored SRS from a single laser speckle. ICF hohlraum conditions
where SRS is expected to be most active are hotter and denser (Te ∼ 2 keV, ne/ncr ∼ 0.1).
Both conditions entail similar values ofk2λD, and the same qualitative features were demon-
strated for hohlraum conditions in Ref. [18] . The ions are immobile, and for nowνK = 0
outside of the ramp regions. This gives a Krook-free centralflattop of length of length 75.4
µm surrounded by 9.8µm of “overhead” (ramps and moats) on each side.

The linear, collisionless, kinetic dispersion relation for SRS was found by Drake et al.
[43]. For theSRS1 parameters, the temporal most unstable mode for weak pump intensity
obtains fork2λD = 0.352 (which has an amplitude Landau damping rate ofν2 = 0.0354ωp),
or λ1 = 653 nm. We useλ1s = 653.4 nm (ω1s/ωp = 5.10) andI1R = 10−5I0L. The spatial
grid spacing is∆x = λ2/20 (recall∆t = ∆x/c) with λ2 given by matching withλ0 andλ1s.
For the velocity grid we use∆v < vtr,s/4 wherevtr,s is the trapping widthvtr calculated for
the beating of the pump and seed waves. That is, we resolve phase-space islands even if
there were no SRS amplification.

The instantaneous SRS reflectivity isR(t) ≡ I1L(t)/I0L whereI1L is the reflected (left-
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Figure 16. Envelope (root mean square) of the electrostaticfield Ex for runSRS1 2, neglect-
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moving) light intensity at the left edge.Ii = (ε0/2)|vgi|E2
i is the intensity of light wavei,

with |vgi|/c = [1−ω2
p/ω2

i ]
1/2 the magnitude of the group velocity andvos,i = eEi/meωi the

electron oscillation speed. These quantities are all foundin plasma, not vacuum. Also, the
undamped SRS amplitude growth rate is

γ0 = k2vos,0
ωp

4[ω1ω2]1/2
. (49)

Figure 14 displays the time-averaged reflectivityRav = 〈R(t)〉 for the run seriesSRS1. All
runs were below the homogeneous absolute instability threshold I0a = 2.98×1016 W/cm2

for undamped light waves, which givesγ0 = γ0a ≡ (1/2)|vg1/vg2|1/2ν2, with vg2 the LW
group velocity. Coupled-mode theory thus predicts SRS approaches a temporal steady state
where the seed light wave is convectively amplified across the box.

The steady state can be solved analytically for a three-wavemodel that includes deple-
tion of the pump laser but no light-wave damping, and neglects LW advection compared to
damping (the strong damping limit) [44]. This is valid forI0L ≪ I0a. The scattered light
wave in this limit satisfies

dÎ1
dx

= −G
L

Î0Î1, (50)

whereÎ0 = I0(x)/I0L, Î1 = I1(x)/I1R, andI0/ω0− I1/ω1 = constant. This last expression of
action-flux conservation is a spatial version of the Manley-Rowe relations.L is the length
of the gain region, and the intensity gain exponentG is

G≡ Lλ1p

λ2
2

[

1− ne

ncr

]−1/2

Im

[

χ
1+ χ

]

I0Lλ2
0

871×1015Wµm2/cm2 . (51)

λ1p is the scattered light wavelength in the plasma.χ(k2,ω2) = εNR− 1 is the electron
susceptibility, where the dielectricεNR is given in Eq. (46).k2 and ω2 are given by the
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beating of the chosen pump and scattered light waves. The resulting reflectivity is

R̃(1− R̃+ s̃) = s̃exp
[

G(1− R̃)
]

(52)

with R̃= (ω0/ω1)R ands̃= (ω0/ω1)I1R/I0L.

For small pump intensities, Fig. 14 shows theELVIS reflectivities are small and in agree-
ment with the analytic coupled-mode result. However, atI0L = 4×1014 W/cm2 there is a
sudden increase above the coupled-mode reflectivity. This is the so-called kinetic inflation
of SRS. It is due to electron trapping in the Langmuir wave andthe resulting decrease of
Landau damping.

The time evolution of SRS is then bursty, as illustrated by the plot in Fig. 15 of the in-
stantaneous reflectivity for the inflated case withI0L = 2×1015 W/cm2, which we label run
“SRS1 2.” The numericalRav = 1.03% is well above the coupled-mode level of 6.26×10−4,
indicating strong inflation. On a computational note, the phase-space cell advance wall time
for this run was 140 ns (compare to 40 ns for the electrostaticrun NR1 above). Figure 16
displays the envelope of the longitudinal electric fieldEx, which reflects plasma wave ac-
tivity. Pulses of large-amplitude LWs develop near the laser entrance (the left edge), and
then break up into modulations that propagate along “rays” away from the laser entrance
with group velocities nearvTe. The process repeats once a large enough quiescent plasma
develops on the left side. The bursts inR(t) near 3, 6, and 10 ps correspond to large LW
pulses on the left edge. The dynamics of these pulses has recently been explained in terms
of “etching” at the pulse’s left edge, or Landau damping by resonant electrons before they
become trapped [45, 46].

For the two strongest pump strengths plotted,Rav is actually below the coupled-mode re-
sult (“kinetic deflation”). This indicates saturation mechanisms besides pump depletion are
important. Both the nonlinear downshift of the Langmuir-wave frequency and the trapped-
particle modulational instability [14] are shown to occur to some extent in these runs, al-
though their relative importance has not been quantified.

For trapping nonlinearity to occur, resonant electrons (those moving near the LW phase
velocity vp2 = ω2/k2) must complete enough of a bounce orbit before a detrapping process
disrupts their motion. In theSRS1 run series, the only detrapping mechanism that sets a
threshold is loss out of the ends of the finite geometry (once large-amplitude waves develop,
trapping can be disrupted by various saturation mechanismsand the resulting decrease in
wave amplitude). We can estimate a trapping threshold by calculating the “bounce number”
NB, or how many bounce periods a resonant electron undergoes asit transits the domain:

NB(x) ≡ 1
2π

Z x

x0

dx′ kB(x′), kB(x) ≡ ωp

vp2
[n2(x)/ne]

1/2. (53)

n2(x) is the local LW amplitude. Inflation will occur ifNB & 1, such that the electron
distribution is sufficiently distorted within the gain region for Landau damping reduction to
be effective. The details of findingNB, using the Langmuir wave driven by the pump and
scattered waves as found in the convective coupled-mode theory presented above, are found
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in Ref. [18]. We just give the result:

NB = NBs
eG/4−1

G/4
, (54)

NBs =
ωpL

2πvp2
(n2s/ne)

1/2, (55)

n2s/ne =
(k2λD)2

2|1+ χ|
vos,0vos,1

v2
Te

. (56)

NBs is the bounce number if there were no seed amplification (G→ 0).
We briefly discuss the spectral features of the runSRS1 2, and refer the reader to Ref.

[18] for details and justification. The time-integrated reflected light spectrum at the left
edge is shown in Fig. 17. Sinceω0 = 6.32ωp, the SRS light is slightly more thanωp

belowω0, the difference due to the increase inω2 aboveωp due to finite temperature. The
peak power is upshifted from the seed valueω1s (the linear most unstable mode) due to the
trapping-induced downshift in the LW frequencyω2. This upshift develops in time, as the
LW amplitude grows.

In addition, there is a weak signal labeled “EAS” at a frequency between SRS and
ω0. This is similar in frequency to scattered light observed inthe single-speckle Trident
experiments [41], although the intensity observed there was only 3000x smaller than SRS
(ours is∼ 106 times smaller). In this paper and elsewhere, the scattered light was attributed
to stimulated scattering off an electron acoustic wave (EAW) which becomes undamped
once electron trapping occurs. This mode exists as an undamped root of 1+Reχ(k,ω) = 0
with ω ≈ 1.3kvTe (see Refs. [47, 48, 49]). All such roots of the complex Landaudispersion
relation 1+ χ = 0 are heavily damped.

We provide an alternative mechanism for generating EAS light, which is revealed by the
electrostatic spectrumEx(k,ω) presented in Fig. 18. The “Stokes curve” on this plot is the
set of(k2,ω2) points phase-matched for electromagnetic decay of the pump, that is,ω2 =
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ω0−ω1 andk2 = k0− k1 with ω1 ∈ [0,ω0], ck0 = [ω2
0−ω2

p]
1/2, andck1 = ±[ω2

1−ω2
p]

1/2

(the +,- root fork1 apply for forward and backward SRS, respectively). Early intime,
SRS occurs at the intersection of the Stokes curve and the linear LW dispersion curve. As
electrons are trapped, the LW frequency downshifts along the Stokes curve. The distorted
distribution supports a set of beam acoustic modes (BAMs), which are seen as a tail at
lower k than the SRS Langmuir wave and lower inω than the linear dispersion curve.
These BAMs can parametrically interact with each other and decay to the acoustic feature
ω ≈ kvTe, labeled “EAW”. We call this process beam-acoustic decay (BAD). The low-k
EAWs can produce the higher-k activity along theω ≈ kvTe line by harmonic generation.
The pump laser then scatters off the weak EAW signal on the Stokes curve, in a process
akin to Thomson scatter which we refer to as electron acoustic Thomson scatter (EATS).
The linear modes of the numerically-obtained distribution(see Fig. 10 of Ref. [18]) include
a set of BAMs (some weakly damped or even linearly unstable),as well as a heavily-damped
EAW, that agree nicely with the observedEx(k,ω) spectrum. The lack of any increase in
EAW activity at the Stokes point supports our claim that the observed EAS light is from a
Thomson-like process, and not the resonant excitation of anEAW.

The discovery of the BAD-EATS process inELVIS simulation data, namely weak
spectral signals and linear-mode analysis of numerical distributions, constitutes a striking
demonstration of the low-noise capability of Eulerian kinetic codes.

4.2. Inclusion of a Krook operator

Thus far the only detrapping process considered is end loss due to finite longitudinal geom-
etry. Finite transverse speckle size (discussed below) also detraps resonant electrons, and
is generally much more rapid than end loss. Coulomb collisions also kick electrons out of
their bounce orbits and thereby detrap. For a generic detrapping process that removes an
electron from resonance in a timetde, we define the bounce numberNB ≡ tde/τB ∝ [δn]1/2

as the number of bounce orbits (periodτB) completed intde. We expect trapping nonlinear-
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ities to be important only ifNB & 1. Preliminary work suggests that collisional detrapping
is generally much slower than side loss in ICF conditions, unless the plasma is high-Z, or
cold andlow density.

We briefly discuss the speckle pattern of the lasers used on ICF experiments such as NIF.
These beams are generally conditioned, or smoothed, with continuous phase plates (CPPs)
[50]; random phase plates (RPPs) were common in the past [51]. A phase plate is a lens with
a rippled surface (smooth for CPPs, sharp steps for RPPs). Without a phase plate, an ideal
optical system would give a diffraction-limited focal spot. But ICF laser systems generate
spots far from the diffraction limit, with a generally irregular and difficult to predict pattern
of very high-intensity speckles. With the use of a phase plate, one obtains an intensity
profile with an envelope much larger than the diffraction limit (set by the lens ripples),
and with speckle intensities lower than the unconditioned beam and of well-characterized
statistics (the intense speckles are the diffraction-limited spot of the full lens aperture). The
ripples on NIF are such that the resulting beam envelope is approximately square. This
approach has proven to be more effective than defocusing theoriginal, unsmoothed beam.
The intense speckles from a square-aperture phase plate, inuse on NIF, are approximately
of lengthL||≈ 5F2λ0 and roughly uniform transverse diameterL⊥≈Fλ0 whereF = Lfoc/D
is the F-number of the optics (Lfoc is the lens focal length andD the lens diameter) [52].

For NIF indirect-drive targets, a grand total of 192 beams are arranged symmetrically
about the hohlraum’s axis into four cones, making angles of 23, 30, 44, and 50 degrees with
respect to the axis. FourF = 22 square beams are grouped together in a quad and focused
with the same lens (they strike it at different locations), with two beams linearly polarized
in each transverse direction (polarization smoothing). Invacuum, all beams overlap in a
region between the laser entrance hole and hohlraum wall. Away from this overlap region,
the beams diverge. The resulting speckle pattern thus varies in space, based upon how many
square beams overlap (either one, two, or four). When four overlap, the speckles “see”
the full quad on the lens, the effective beam diameter is about Lfoc/8, and the speckles
are cylindrically symmetric withF ≈ 8. However, for regions covered by two beams or
one beam, the speckles are nearlyF = 8 by F = 22 (asymmetric) orF = 22 by F = 22,
respectively. This vacuum propagation picture is further complicated by the presence of
plasma, e.g. refraction of light away from high-density regions. Modeling of the 3D laser
propagation (and backscatter) in NIF targets, with the paraxial envelope codesPF3D [53, 54]
(time-dependent) andSLIP [55, 56] (steady-state), validates this qualitative picture.

In a speckled laser beam, SRS-driven Langmuir waves are of finite size, approximately
that of the intense laser speckles. Resonant electrons enter a speckle from the surrounding
thermal bath, interact with the wave for a finite transit time, and then leave. Landau damping
thus occurs as transit-time damping: free electrons far from the speckle enter the region of
Langmuir wave activity, exchange energy by interacting with it, and exit as free electrons.
Resonant electrons, moving along (||) and across (⊥) a speckle with speeds≈ (vp2,vTe),
have transit times ofτ|| ≈ L||/vp2 andτ⊥ ≈ L⊥/vTe. For a cylindrical, square-lens speckle,
τ||/τ⊥ ≈ 5FvTe/vp2 which is typically≫ 1. Thus, transverse side loss is usually much faster
than end loss, and is the relevant detrapping time.

Calculations of transit-time damping, using nonlinear electron orbits in a prescribed
Langmuir-wave potential that mimics speckle geometry, have been performed by H. Rose
[57]. These show the transit-time damping rate decreases slowly with NB, reaching about
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angle) except thatνK 6= 0. The solid lineR= 7.86×10−5 is the steady-state coupled-mode
result using linear Landau damping andνK = 0.

half its linear value forNB = 1. This quantifies how trapping reduces Landau damping
in speckle geometry. Similar work on the nonlinear frequency downshift shows it also
turns on slowly withNB [58]. The damping rate in a finite-geometry speckle becomes more
complicated once Langmuir-wave filamentation occurs, and is still under investigation [16].

Speckle side loss can be approximately modeled in a 1D Vlasovcode by including
a Krook operator, as inELVIS. We stress that this operator isnot being used to model
collisions, but the transverse loss of electrons from the speckle and their replacement from a
thermal (Maxwellian) population. Our Krook operator, which conserves number but neither
momentum nor energy, is appropriate for this purpose. The Krook damping rateνK is the e-
folding time for some perturbation infe, so we simply taketde = 1/νK andNB = 1/νKτB =
(ωp/2πνK)(δn/ne)

1/2. We have found the time for half the particles of a thermal population
to leave a cylinder of diameterL⊥ is t50vTe/L⊥ ≈ (0.68,0.33) in 2D and 3D geometry,
respectively. Assuming an exponential decrease of confinedparticles, these correspond to
Krook e-folding rates ofνK = ln2/t50 = (1.02,2.10)vTe/L⊥.

We examine the role of a Krook operator with the run seriesSRSk. These runs are
like the I0 = 1015 W/cm2 Krook-free case from the seriesSRS1 discussed above, except
that a nonzero value ofνK in the central region is used. To give a sense of physically
reasonable values forνK , we find that forL⊥ = Fλ0 and the 3DνK formula found above,
νK/ωp = 2.10λD/Fλ0. For our Trident-like run conditions andF = 8, this givesνK/ωp =
8.26×10−3. Figure 19 presentsRav as a function ofνK , and shows a gradual decrease of
the reflectivity to the coupled-mode value and then below. The coupled-mode result was
found with the Krook-free susceptibilityχ, and so neglects the increase of damping with
νK .

We take the caseνK/ωp = 0.005 as a marginal one just below threshold for any in-
flation. This run’s reflectivity becomes relatively steady in time, with the Langmuir wave
amplitude fairly uniform in space. We plot the approximate bounce numberNB vs.x, using
the spatially localδn for τB for this run in Fig. 20. The slight increase, and greater fluctu-
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below threshold for any SRS inflation.NB is calculated using the local LW amplitudeδn
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ations, inNB toward the laser entrance (left edge) reflect the weak SRS amplification and
temporal non-stationarity.

4.3. Inclusion of seed bandwidth

So far, we have always seeded SRS with a monochromatic left-moving seed light wave, with
a wavelength chosen to be the temporal most unstable mode. This is similar to the backward
Raman amplifier and other “optical mixing” arrangements. However it is unrealistic for ICF,
where SRS grows from fluctuations (electrostatic or electromagnetic) in the plasma, or from
light or Langmuir waves developing from SRS or other processes outside the spatial region
of interest. In this section we show that SRS inflation and thescattered-light spectrum
are essentially unchanged when bandwidth is included in theseed light wave. This gives
confidence that our prior results are not an artifact of coherent seeding.

Let f (t) = f0cos[ωMt + φ(t)] denote the generated signal with bandwidth, which we
use forE−(t) at the right edge. We present an algorithm to find the phaseφn = φ(tn) on the
discrete time gridtn, such that| f (ω)|2 is roughly Gaussian with meanωM:

| f (ω)|2 ∝ exp[−(ω−ωM)2/2∆ω2]. (57)

Our method can be thought of as a discrete analog of a Langevinequation. Theφn satisfy
the following recurrence relation:

φn+1−φn−e−1/N(φn−φn−1) = ∆ω∆t[2N]1/2(1−e−1/N)rn. (58)

rn is a uniform normal deviate of mean zero and variance one, chosen from the probabil-
ity distribution P(r) = [2π]−1/2 exp[−r2/2]. ∆ω is the desired spectral bandwidth, and the
“phase decay time”N∆t (N ≫ 1 but need not be integer) controls how quickly the instan-
taneous frequency shiftα ≡ dφ/dt decorrelates.∆ω andN are independent parameters.
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Figure 22. Time-integrated scattered-light seed spectrumfor ∆ω = 0.509ωp run from the
seriesBand. The red dashed curve is Eq. (57) forωM = ω1s = 5.10ωp.

Different signals can, for infinite time, have similar powerspectra, but different rates at
which (an appropriately smoothed)α changes. In the context of SRS, we wantα to change
faster than the SRS growth time, or else SRS will effectivelysee a relatively monochromatic
seed. We implement this method via a fictitious intermediateφ′:

φ′n+1/2 = e−1/Nφ′n−1/2 + ∆t
(

1−e−1/N
)

rn; φn+1 = φn + φ′n+1/2. (59)

The series ofELVIS runsBand illustrates the effect of seed bandwidth. The runs are
identical to the runSRS1 2 except for the inclusion of seed bandwidth (the overall seed
intensity is the same,I1R = 10−5I0L). For all runsN∆t = 22ω−1

p , which is shorter than the
undamped growth time 1/γ0 = 43.9ω−1

p from Eq. (49).γ0 should be an upper bound on the
timescale of SRS dynamics, so the seed frequency decorrelates faster than SRS evolves. The
time-averaged reflectivityRav for different∆ω is plotted in Fig. 21, and shows only a slight
decrease with increasing bandwidth. Figure 22 depicts the time-averaged seed spectrum
for the highest-bandwidth case∆ω = 0.509ωp. It nicely matches the theoretically expected
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Figure 23. Time-integrated reflected-light spectrum for∆ω = 0.509ωp run from the series
Band. ωeasis the observed electron acoustic scatter in the runSRS1 2 from Fig. 17.

Gaussian (the red dashed curve) nearωM, but has higher tails around the -40 dB level. The
reflected light spectrum is displayed in Fig. 23, and shows SRS amplification over a much
narrower frequency band than the noise (gain narrowing). Also, there is no distinct electron
acoustic scatter (EAS) peak above the seed level, although theEx(k,ω) spectrum is similar
to the ∆ω = 0 case shown in Fig. 18 (including the presence of EAWs). Thisindicates
EAS in these runs is not a parametric process that resonantlydrives EAWs: if it were, then
adding more scattered-light seed by increasing∆ω would increase the EAS level.

5. Conclusion

In this chapter, we presented the 1D Vlasov-Maxwell solverELVIS. The accuracy of its
numerical methods was analyzed, in particular showing the low dissipation and dispersion
(and global number conservation) of advection by cubic spline interpolation. The transverse
light-wave algorithm was seen to have low dispersion error and no dissipation forωp∆t < 2.

As an electrostatic application ofELVIS, the evolution of free Langmuir waves, initiated
as density perturbations, was presented. For non-relativistic problems, the number and en-
ergy conservation and agreement with the linear analytic damping rate were both excellent.
Nonlinear damping reduction due to electron trapping was also evidenced. The numerical
difficulties due to velocity-space filamentation were seen via the recurrence of the initial
perturbation once the recurrence timetrec = λ/∆v was reached. The Landau damping for
relativistic dynamics was shown withELVIS to be much less than its non-relativistic value,
for the high temperature considered (17 keV). Although thisis qualitatively like recent an-
alytic results [35], the lack of better agreement may be due to the reduction from 3D to 1D
momentum used inELVIS.

We also discussed several applications to stimulated Ramanscattering (SRS). For no
Krook operator (outside of boundary regions), the kinetic inflation of SRS above coupled-
mode levels occurs. This is due to the trapping-induced reduction of damping. A simple
threshold, based upon the number of bounce orbitsNB completed by resonant electrons as
they transit the finite gain region, was also given. The modified electron distribution leads to
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electrostatic beam acoustic modes, which excite electron acoustic waves (EAWs) by beating
with each other. The laser then scatters off these in a Thomson-like way, which is quali-
tatively similar to (but much lower in amplitude than) the electron acoustic scatter (EAS)
observed in Trident experiments [41]. This explanation is distinct from the stimulated EAS
picture, where a laser parametrically scatters off (and therefore resonantly excites) an un-
damped EAW.

These SRS results were then expanded in two ways. Fist, a nonzero Krook rate was
included, which provides an inflation threshold. Inflation begins when electrons complete
roughly one bounce orbit before being detrapped by Krook relaxation. We discussed how a
Krook operator can mimic in 1D the transverse loss of electrons from a laser speckle, and
estimated the sideloss escape rate for the phase-plate-conditioned laser beams being used
on NIF. The other extension involved using a broadband seed scattered light wave (with
Gaussian noise), instead of a monochromatic one. SinceELVIS is very low-noise, some
seed level must be included from which SRS can grow. For the inflated case considered,
even a large bandwidth (∆ω = ω1s/10) decreased the reflectivity only slightly. This shows
that the prior results were not an artifact of a highly coherent seed.

Despite the importance of multi-D effects in SRS, there are still important questions
which can be addressed in 1D. The construction and validation of envelope models that
can accurately replicate nonlinear kinetic simulations, especially in the onset of inflation,
SRS saturation, and resulting scattered light spectra and energetic electron distributions, is a
work in progress. Recently, an adiabatic theory of driven Langmuir waves [59] has been ap-
plied successfully to the frequency shift [25] and Landau damping reduction [26] inELVIS

simulations of SRS. The results differed from the standard formulas à la Morales [11], and
were valid above the so-called “loss of resonance” limitk2λD > 0.53. A wavenumber, as
well as frequency, shift were also observed in these runs.

In addition, little attention has been paid to how trapping affects SRS in an inhomoge-
neous plasma. Kinetic inflation has been found inELVIS runs in a density gradient [24, 40],
with a somewhat larger reflectivity when the laser propagates toward higher rather than
lower density, but a satisfactory understanding is lacking. The competition in SRS of trap-
ping and the Langmuir decay instability (LDI), or decay of a Langmuir wave into an ion
acoustic wave and backward-moving Langmuir wave, is also unexplored. This requires
mobile ions, which were excluded from the runs presented here. A kinetic (but linear)
treatment of LDI was given in Ref. [60]

Use of a range of computational tools, from fluid to Vlasov to particle-in-cell, with
varying dimensionality and physics models, will continue to yield new insight into Raman
scattering and other processes of basic plasma physics.
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