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Abstract

The Eulerian Vlasov-Maxwell solvezLvis is described, and applied to electro-
static and laser-plasma interaction problems, in this raphe code treats the plasma
kinetically in one longitudinal dimension, either nonatVistically or relativistically,
and optionally including a Krook relaxation operator. Thensverse dynamics com-
prise linearly polarized light waves and a cold, collis&sd fluid. The kinetic equation
is solved via operator splitting, with 1D space and momenrddvections performed
by solution along characteristics with cubic spline int#gpion. The Landau damp-
ing of a Langmuir wave, created as an initial density pegtidm, is studied non-
relativistically and relativistically (the damping is neckd in the latter case for high
temperatures). Nonlinear trapping of electrons in the vgguetential well, and the re-
sulting decrease of Landau damping, is also demonstraiedl&ions witheLvis of
backward stimulated Raman scattering (SRS) of a high-éitetaser, for parameters
appropriate to inertial confinement fusion, are preserauktic inflation, or enhance-
ment, of the SRS reflectivity (due to trapping-induced dargpeduction) above that
of coupled-mode, linear-damping calculations is showroimditions relevant to single
laser speckle experiments at the Trident laser facilityaddition, the generation of
electron acoustic waves (and Thomson-like laser scagfefithem) by the beating of
SRS-produced beam-acoustic modes is shown. The inclu®Kmok operator, to
mimic transverse electron loss out of a finite speckle, irepasthreshold for inflation,
which gradually develops as resonant electrons compiet@e bounce orbit before
being detrapped. The use of a broadband scattered-ligthtveeg slightly decreases
the reflectivity below that given by a monochromatic seed.
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1. Introduction

Kinetic equations, which describe the evolution in phaseemf particle distribution func-
tions, comprise some of the most fundamental descriptibpéasma dynamics. The rich
physics and extreme detail contained in such models is guaoied by the severe chal-
lenges involved in their theoretical and numerical soluti®hile fluid or other reduced
models can frequently be employed, there are importansaskere a kinetic description
is necessary (and discussed in this book).

This present chapter is concerned with kinetic simulatiefeted to laser-plasma inter-
actions [1]. In particular, we will focus on physics relevam stimulated Raman scatter-
ing (SRS), a resonant, three-wave parametric process waaiep electromagnetic wave
(EMW), such as a laser, decays into a scattered EMW and a L#ingvave (LW). SRS
is the basis of several applications, including laser-thas@ticle acceleration [2] and the
backward Raman amplifier [3]. Moreover, for laser-driveertial confinement fusion (ICF)
[4, 5] experiments like the National Ignition Facility (NIf6] and Laser Mégajoule (LMJ)
[7] to succeed, SRS and other laser-plasma instabilitiest mat be too active. Since SRS
removes energy from the pump laser, it can prevent the diesirergy from being delivered
to the target, with the desired spatial and temporal behahilb- experiments on hohlraum
energetics in late 2009 showed significant (but accept&iRS from the “inner” cone of
beams [8].

The Langmuir wave in SRS resonates with electrons movirlgeatvve phase velocity,
which gives rise to linear Landau damping [9]. For a finitepéitnde wave, electrons can be
“trapped” in the wave’s (nearly) sinusoidal potential. §bauses several nonlinear effects,
including the reduction in Landau damping [10], the dowfishiLW frequency [11, 12],
the trapped-particle modulation instability [14], and baruir-wave self-focusing or fila-
mentation [15, 16]. The distortion of the electron disttibn near the wave phase velocity
produces a population of energetic or “hot” electrons. Ftbenstandpoint of achieving
ICF, these electrons can irreversibly pre-heat the fuesuapand thereby reduce the fuel
compression (which degrades rapidly as entropy is added).

These processes are all fundamentally kinetic, which is jamnaotivation for kinetic
SRS simulations. Analytic progress has also been made iarstashding and modeling
these effects. We will not attempt here to review recentritézal and numerical work in
kinetic modeling of SRS, but will briefly mention a few higgits.

In this chapter, we will discuss kinetic simulations rel@veo SRS, performed with a
1D Eulerian Vlasov-Maxwell solver callegivis. These include electrostatic studies with
no laser included, such as the linear and nonlinear damgibgr@muir waves. We shall
show that the damping rate in a high-temperature (17 ke\&nmeis greatly reduced when
a relativistic instead of non-relativistic model is usededfromagnetic simulations with
a pump laser will explore the enhancement or “inflation” ofSS@Rue to Landau damping
reduction [17, 18], along with scattering off electron astiziwaves indirectly generated by
SRS. We explore the threshold for trapping to overcome atile (represented by a Krook
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operator, intended to model multi-D particle side loss d@ kaser speckle), along with the
role of bandwidth in the seed scattered light wave.

The chapter is organized as follows. Section 2 describesnibel and numerical
method of theeLvis code. The code is applied to electrostatic problems coimgpithe
non-relativistic and relativistic evolution of an LW in gm 3. SRS simulations with and
without Krook relaxation are presented in section 4, wh&followed by the conclusion.

2. ELvIS Equations and Numerical Method

ELvIS (which stands for Eulerian-Lagrangian Vlasov IntegratathwSplines) is a se-
rial Vlasov-Maxwell solver, with kinetic longitudinal damics, cold-fluid transverse dy-
namics, and linearly-polarized transverse electromagietm) fields. Time evolution is
“leapfrogged” in that the particle distribution functidris known at whole timesteps, while
the transverse e/m fields are known at half steps. Operaditimgpis used in time for the
kinetic equation, such that the phase-space advectiorspéice and momentum) dfare
done separately. These 1D advections are performed viadtteodhof characteristics (also
called the semi-Lagrangian or Eulerian-Lagrangian meth@dbic splines are used to in-
terpolatef at the “foot” of characteristics, which are simply the padiorbits. The code is
similar to the parallel codsAPRISTI[14, 19], and also to the non-periodic code described
in [20] (Ref. [21] detalils its periodic version).

ELVIS is a rather modest code by current standards, and is far fierautting edge of
massively parallel, multi-D Vlasov codes using high-ordegthods. We are still able to
productively use it for physics problemsLvis is documented and applied extensively to
electrostatic problems and SRS in Ref. [22], as well as R285.24, 18, 25, 26].

2.1. Model and geometry

ELVIS employs a simple 1D model which allows for SRS to be studieetically. Spatial
variations (gradients and wave vectors) are all inxlflngitudinal) direction. The parti-
cle dynamics inx are described by a kinetic equation, consisting of a coltigiss Vlasov
operator which includes thecomponent of th& x B (ponderomotive) force from the trans-
verse electromagnetic fields. In addition, a Bhatnagas&Krook, often called simply a
Krook, operator is included [27], both to mimic dissipati@uch as transverse sideloss out
of a localized laser speckle) and for numerical damping beandaries. The transverse
dynamics describe light waves linearly polarizedyjrand the particles are described as a
cold, collisionless, non-relativistic fluid withyavelocity. Fig. 1 presents the geometry, with
profiles relevant to SRS in a finite system.
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Figure 1. Geometry of theLvis code, illustrated for a laser backscatter problem in a finite
density profile.

The governing equations in normalizegLV1s” units are:

101+ Vi Zs (Bt wsB) 3, f5 = vics() (nsfos — ), ()
WEx = p=7) Zsns, (@)

HsOtVys = ZsEy,s (3)

(B £0)ET = —Jy=-3 Zanows, (4)

E* = E/+B, S ()

Note thatt, = (1/2)(E* +E~) andB, = (1/2)(E* —E ™). ELVIS units are such that length,
time, mass, charge, and number density are scalégte c/wpo, 1/wWgo, Me, € andn,
wherem is the electron masg,> 0 the positron chargey is a reference number density,
and wf,o = np€? /g is the electron plasma frequency fiag. ps = Ms/me and Zse are
the relative mass and charge of spedes= e for electrons,Ze = —1. We useELVIS or
physical Sl units as convenient (which should be clear byeod)) and writeXey, Or Xphys
to explicitly indicate units. We drop thesubscript when this leads to no ambiguity.

The 1D particle distributionfs(x, px,t) is normalized such thats = [dpy fs is the
volumetric number density. Thevelocity vy is related to momenturpy by vy = uy/Yx,
wherel = Ppnys/MsC = Peiv/Is i always unitlessyx = 1 or [1+ u2]Y/2 for non-relativistic
or relativistic modes, respectively. The relativistic reogkcludes transverse motion from
the Lorentz factoyy, and is thus only appropriate fags < c. Itis valid for studying strictly
1D relativistic dynamics. A number-conserving Krook relign operator is included, with
relaxation rate/ks(x) and a normalized equilibrium distributioigs (usually set to a thermal
Maxwellian), [ dpy fos = 1.

To understand the transverse dynamics, we write the “fubtritbution function as
F (X, px, Ry, P2) = T(X, px)d(Py)d(p,) whered denotes the Dirac delta functio®, is the
canonicaly momentum, and we ignoremotion. Oury momentum equation is just the
conservation law?, = 0, sometimes called Gabor’s theorem [28]. This is justifisdad
lows. Consider a warm, non-relativistic fluid momentum dapmawith isotropic pressure,
in physical units:

m(d; +V-0)V=q(E+Vx B) —n~10p. (6)
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Introducing potentials vi& = —O@— d;A, B = 0 x A, and an equation of state such that
n~10p = Og(n), this becomes

dP=UxOxP-0G 7)

with P = mv-+ gA the canonical momentum a@&i= %mv?+q(p+ g. Taking the curl of this,
we find
0C =D0x (VxC), C=0xP. (8)

Clearly, if C = 0 initially, it remains so for all time. This obtains, for iasice, if a plasma
initially free of transverse fields or motion is irradiateg dlaser introduced from vacuum.
For our geometry,] — dx, andC, = 0xP, remains zero for all time. IR, at somex (say, far
from the laser) is zero for all time, thé®(x,t) = 0.

We use the combinatiorts,. of the transverse e/m fields, andB, since they each sat-
isfy a 1D advection equation which requires a single incgntiaundary condition, suffers
no numerical reflection at the outgoing boundary, and isikeadlvable by shifts of one
gridpoint if Ax = cAt (see Sec. 2.6.).

2.2. Structure of the timestep

We employ a “leapfrog” scheme whefe and instantaneous functions of it likeand Ey,
are stored at whole timesteps= nAt, and the transverse e/m fielfs are stored at half
stepst,_1/2. Only uniform grids are currently employed Igyvis, and treated herey, is
needed at both whole and half steps, since it appears in bethand E* time advance.
All spatial functions are known at whole gridpoints= jAx. For electrostatic problems
(no transverse field&® or vys), At andAx are unrelated, and there is no Courant stability
condition due to the way we advanéealong characteristics. However, for problems with
transverse fields we requifex = At since we advancE* by shifting them by exactly one
gridpoint every timestep (see Sec. 2.6.).

The complete time advance, from timgto t, is given in Fig. 2, and is described as
follows:

1. Sy, (stream): advancé for At/2, from fsp to f;lyz, via (0; + w0x) fs = 0.

2. Using f§1721 computens /2, P1/2 = ¥ sZsNs1/2, andEy /> from Gauss’ law. These
quantities have valid values &t since theA andK operators both leaves un-
changed.

3. Ky/2 (Krook): advancefs for At/2, from fg172 to f§1/2’ via i fs = Vks(Ns 12 fos— fs).

4. M1 (Maxwell): AdvanceE* by At from Efl/z to Ef/z via (0; +05)E* = —Jy0 where
Jyo = 3 sZsNs 0Vyso-

5. Y1 (y accelerate): Advanogs for At viavys1 = Vyso + (Zs/ Zus)(Ef/2 + Ef/z)-

6. Findvys1/2 = (1/2)(Wso +Ws1). This auxiliary variable is needed in tixeorce in
the Vlasov acceleration, but is directly dependent onlygrat whole timesteps.
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Figure 2. Diagram of ongLVvIs timestep from timeg to t;.

7. A; (accelerate): advanch for At, from f§1/2 to fs+l/2, via (0t + Fxg1/20p,) fs = 0
whereFyg1 /> = Zg[Ex1/2 + (1/2)v),$1/2(E1+/2 — El‘/z)] is thex force atty /5.

8. Ky/2: advancefs for At/2, from f . to f_.

$1/2 1 via Krook operator as in step 3.

9. S;/,: advancefs for At/2, from f§1 to fs1, via free streaming as in step 1.
10. Usingfs1, computenss, p1, andEy 1 as in step 2.

The kinetic equation fof is solved via operator splitting [29, 30], first applied tagbv
codes by Cheng and Knorr [31]. Consider a generic time-deoiequation

daf
i
where H; is an operator on the variablels The exact solution for a timestefst is
U (At)fo whereU (t) = expHt and fp is an initial condition (IC). The splitting theo-
rem states that given two approximate operatdfswvhich are second-order accurate, i.e.
(UA(At) — U (At)) fo = O(At3), we can construct an operatd? which is a second-order
accurate approximation td via

va H:H1+H27 (9)

U3(At) = UB(AL/2)UR(ALUR(AL/2). (10)

This can be verified by computitg?(At) — expHAt for non-commutingH; (which is gener-
ally the case for the operators we consider), and is relatdtetBaker-Campbell-Hausdorff
formula for Lie groups.

The method is directly extended to multiple operators, fergthree operators we have

U2(At) = UR(At/2)UZ(At/2)UZ(AUZ(AL/2)UR(AL/2). (11)

This is precisely the case for our kinetic equation, whicloives operator§=U2, K =UZ,
andA = U for free streaming, the Krook operator, and acceleratispeetively. In the
timestep notation used above, the kinetic equation is aplibllows:

U(At) = Sy/2Ky1/2A1K1/2S) /2. (12)
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2.3. f advection: cubic splines

The space and momentum advections in the kinetic equatiolnadin performed as separate
1D shifts along characteristics (called a semi-LagrangiaBulerian-Lagrangian method).
For concreteness consider thadvection (performed once for eagjo; f +voy f = 0, with
solution f(x,t +At) = f(x—VAt,t). Let f]' = f(xj,tn), Xj = jAX, andt, = nAt. We must
find fjn+1 = f(x; — VAt,tn) given fjn at timet,. Sincex; — VAt is in general not a gridpoint,
we interpolate to find its value. Characteristic methodsuatelly implicit, in that a set of
equations must be solved to carry out the interpolation,asal have no Courant stability
condition (see the von Neumann analysis below), since alshifnore than one gridpoint
merely requires the interpolation to be done aboux &tation farther fronx; (of course,
accuracy suffers with shifts over many gridpoints). Thawie always interpolate fofjn+1
between known values o‘ljn and never extrapolate as happens in methods like first-orde
upwinding whernvAt > Ax (this is why such methods have a Courant condition).

ELVIS uses cubic spline interpolation, as detailed in App. A.4.R8]. Cubic spline
and cubic B-spline interpolation (for uniform and non-wnifi grids) is discussed and ap-
plied to Vlasov and fluid equations in Ref. [32]. Ref. [33] tains a general discussion
of spline and other interpolation applied to advection peots, including details on their
numerical dispersion and dissipation. The advantages lot @plines are low numeri-
cal dispersion and dissipation, and the low computationat of the resulting tridiagonal
system of equations. Its drawbacks include that the intanpaan overshoot, or exceed
extreme values of the givef) points (for instance, the interpolant of an initially posit
set of f; can be negative). Moreover, semi-Lagrangian advectios doé satisfy docal
discrete conservation law, as do finite-volume, flux-covesare methods. This problem is
not specific to spline interpolants.

ELVIS currently uses only uniformt and py grids, which give high-order accuracy but
are wasteful in that the finest resolution needed on eachnunist be used everywhere. In
our particular applications the momentum resolution néedg highest around the plasma-
wave phase velocity where electron trapping occurs, angtaatial savings could be had
by using a coarser mesh elsewhere. Some results below, \n#redfidiagonal system Eq.
(21), are only valid for uniform grids.

Cubic spline interpolation entails expressifk) as a cubic polynomiakF;(x) about
each gridpoint:

Fj(X) = fj+ pjX + X%+ g;X° (13)
whereX = (x—X;)/Ax. Fj(0) = f; by construction, and we require continuityat X;

of Fj and its first two derivatives with the neighboring interpul&;_;. These matching
conditions give the following system:

fia+pj1+si1+0i-1 = fj, (14)
Pj—1+2Si-1+30j-1 = Pj, (15)
sj,1+39j,1 = 5. (16)

Taking linear combinations of these equations at nearlgpgints gives a tridiagonal sys-
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tem for the unknowns in terms of the knowyis:

Pj+1+4p; +pj-1 = —3fj_1+3fj 1, (17)
Sj+1—|—4Sj+Sj,1 = 3fj,1—6fj—|—3fj+1, (18)
Oj+1+409j+0j-1 = —fj_1+3fj—3fj 1+ fji2. (19)

Consider now interpolation fox advection withv < O for definiteness, involving a
shift = |v|At. We assumé\ = §/Ax < 1 for convenience (as discussed above, shifts by
more thanAx pose no difficulty). We approximate the new value fpfat timet + At,
fjn+1 = fj = f(Xj +5), by

f_j% Fi(x; +90) = fj—|—ij+SjA2+ng3. (20)

We can form a tridiagonal system for thig all shifted by the sama from x; (valid only
for a uniform grid), in terms of the knowfy, by taking f;_, +4f; + f;_ 1

fi1+afj+f1=asfjo+afj1+afj+af1, (21)
where
a = 1-3A+3A2—A3 (22)
a = 4—60%+30° (23)
a; = 1+3A+3A%2-3A3 (24)
a, = A (25)

Forv > 0 the logic is similar, and a unified system for both signs isf
fioa+4fj+ fla=asfi s+aifi o+afj+afje (26)

with 0 = signv= +1. Thea’s are definedxactly as for \« 0, with d = |v|At in both cases.
The numerical dispersion and dissipation of advection grpolation can be studied

by a von Neumann analysis. We consider the time evolutionnef gpatial harmonic of

wavelength 2/k by writing f! = g"explikx;]. Substituting into Eqg. (26), we find

g-[4+2cosu] =a e 2% fa 1679 +agfj +a €, (27)

wherea = kAx. The corresponding solution of the advection P@E+ vox)f =0is f =
expik(x — vt), which gives an analytic amplification factgg, = exp—ikvt]. Numerical
dissipation or instability is indicated Bg| # 1 (note|gan| = 1), and the phase errgrin one
timestep is given byp = arg/g/gan]. Figure 3 presents the dissipation foe [0, 17, or half
the Nyquist rangék| < 1t/Ax. The following symmetry relations applyg(—a)| = |g(a)|,
lg(c = —1)| = |g(o = 1)|, and|g(A)| = |g(1—A)|. The dissipation is quite small for small
a or A. In all casegg| < 1, which means the method is numerically stable and has no
Courant condition (recall our analysis is fir< 1, butA > 1 is simply handled by basing
the interpolant off a a position shifted by more than onempidt). Also,g(k=0) =1,
indicating that the mean value dfis unchanged. That is, the “masgtx f is globally
conserved (although in general it is otally).
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Figure 3. Magnitude of numerical amplification factgprfor advection by cubic spline
interpolation, Eq. (27). The same plot applies for eitharich of o = signv, fora — —a,
and forA — 1—A.
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Figure 4. Numerical phase errgr= argg,/dan| in one timestep, foo = signv = 1 for
advection by cubic spline interpolation, Eq. (27). Notetha-o) = —@(a), (o = —1) =
—@(o=1),andp(1—A) = —@(4).

Figure 4 plots the phase errgr and several anti-symmetry relations fpare given
in the caption. The error is quite small away frem= 11, so that as long as the features
being advected are well-resolved their dispersion is ateurThe figure is repeated on a
logarithmic scale in Fig. 5. It is interesting thpassumes an almost universal form when
o is not too large and departs from 1/2.

So far we have described the solution for interior points reglected boundary condi-
tions (BCs).ELVIS uses periodic BCs iR, even though we frequently study non-periodic
problems like SRS. Following Fig. 1, the periodicity domairx is X, to xg, with f =0 in
the exterior “moat” regions where transverse e/m wavesagate in vacuum to the final
boundariesx= 0,L. To make the problem effectively periodic, we use finite dgnmofiles
and large Krook rates in boundary regions. Periodic BCs atk basy to implement and
maintain global number conservation. Early work withvis collected escaping particles
on boundary plates [23], but this proved impractical dueatgé localized fields that de-
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Figure 5. Figure 4 on a logarithmic scale.

veloped. Particle re-emission from a thermal bath is amqtbesibility. The momentum
shift uses open boundaries, where we asstirae0 outside the finitgy grid. This leads
to a loss of particles, and can be remedied by replenishorg & thermal Maxwellian bath
after thepy shift. In this chapter, no bath is used in the electrostatibiems (but number
conservation is still excellent, see Fig. 8), while it isdig®ethe SRS runs.

2.4. Krook Operator

We seek a Krook time-advance opera.ﬁ@rthat solve®; f = vk (nfo — f) to at least second-
order accuracy. This equation leaves the densitymchanged, as is readily seen by inte-
grating it overpy. We can thus use the exact solution to this linear equation:

f(t) = f(0)e V' 4+ nfp(1—eVxt). (28)

It is important that distributions, such ds, be normalized numerically and not analyti-
cally. Thatis, [ dpx fo, as computed on the discrepg grid and with the method used to
numerically compute density, must be unity. Otherwide will steadily change the num-
ber density over time. The same comment applies to settinfytophave a desired initial
density. For finite-geometry runs, we use a lavge in “damping regions” (see Fig. 1) at
the edges to absorb plasma waves generated inside the glagmdy SRS) and to damp
fluctuations generated in the density profile ramps.

2.5. Solving forEx

The longitudinal electric fieldy is found directly fromp and Gauss’ law, Eq. (2), and
not via the potentialp, although we frequently fing for diagnostic purposes. We firig),

by either a Fourier or finite-difference method. We use therieo method for essentially
periodic problems, such as a wave over one or several watbkerand the finite-difference
method for finite problems like SRS (the gradual evolutiowaf/e envelopes over many
wavelengths). In either case, boundary conditions (BCstralso be specified. These and
various solution methods are discussed on pp. 75-79 andAppRef. [34].
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For a periodic system from= 0 toL, we haveE,(0) = Ex(L). Integrating Gauss’ law
from 0 toL givesE4(L) — Ex(0) = Q whereQ = [ dx p is the total charge in the system.
Q must be 0 forey periodic, so we can only apply periodic BCs for systems withnet
charge. For periodic BCs we must impose an additional cimmdib set the absolute level
of Ex. One choice is to eliminate DC fields by shiftifg so it has zero average; this is also
called a “short-circuit” BC . It is equivalent to demandipdpe periodic, which implieg,
has zero average (analogous to the relation betwesm E, for periodic BCs).

Our finite-difference solution of Gauss’ law involves fingiBy at fictitious half grid-
points and then averaging to fili} at full gridpoints. In particular,

1
Exj+1/2 — Exj-1/2 = X pj, Exj= E(Ex7j+1/2 +Exj-1/2)- (29)

This method is equivalent to finding with the usual 3-point centered stencil fgf and
thenEx by a centered difference. Our method eliminates the needlte s tridiagonal
system.

To find the accuracy of this method, consider interior po{neglect boundaries), and
for full gridpoints letEy ; = Ex,j +ej whereE, j is our numerical approximatiorﬁx(x) is
the trueEy, ande(x) is the error E. ande are continuous functions aj. Assumingpy j is
exact, we find by Taylor expanding thgt= (Ax?/12)0xEx j. The method is thus second-
order accurate idx. It is also highly localized in space. For a unit impufse= djk, we
haveE, ; = (0,Ax/2,Ax) for (j <k—1,j =k, j > k+1). The full change irEy thus occurs
over a few gridpoints.

Our Fourier method for findindey, appropriate for periodic systems, utilizes “ex-
act” differentiation in wavenumber space. That is, with wurier transformf (k) =
[dx e ®f(x) for the field f, Gauss’ law giveskEy = p for k # 0. Ex(k = 0) is the av-
erage value oF,, which must be determined by BCs.is simply found fromE, = —ik¢.
This “exact” approach is spectrally accurate but highlylooal, in thatEy at onex is influ-
enced byp at all x (with the influence dropping off weakly). This is an effeeti@pproach to
intrinsically periodic problems, but undesirable for, sayelope evolution like in SRS. A
more spatially local differentiation operator thincan be used, at the expense of spectral
accuracy, but we do not adopt one. See App. E of Ref. [34] falaminating discussion
of these issues.

2.6. Advance of transverse field€*, v

We now turn to the time advance of the transverse fi@dsand Ws, performed by the
operatorsM; andY;. For simplicity we consider only electronsy{ — we). We must
advanceE™ from timestept,_1/> t0 ty,1/2, andvye fromt, to tn, 1. The relevant PDEs in
ELVIS units are

1

Ne is held constant df, as is appropriate for our overall timestep. To obtain tepelision
relation for the continuous PDEs, first verif@y — 0xx)Ey = NeOi\We = —NeEy USINgE™
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Figure 6. Dispersion relation for transverse dynamics. Sdi curve is the exact, contin-
uous resultod,, = w? + c’k?. The dashed curve is the numerical restgm, Eq. (38), for
a= wplt = 1.

andE~ (it is useful to factorizedy — 0xx = (0y + 0x)(0; — 0x)). Then Fourier analyzing
by assuming exikx— wt) space-time variation for all fields, we find in physical units
0 = Wem = Wp[1 + (kde)?]Y/? with de = c/wyp. This is the usual dispersion relation of light
waves in a cold plasma.

For the discrete time advance, we sEift along the appropriate vacuum characteristics
(x = xo £ ct) by exactly one gridpoint. This requirds< = cAt, and this constraint obtains
whenever transverse fields are used. Kot 0, this gives the exadE*. The source), is
evaluated at the midpoint of the characteristig. is advanced by the midpoint rule. Thus,

+n+1/2  _ —+n-1/2
Ej = B0 A o Mejo120t (32)
—-n+1/2 —,n-1/2
Ej = By T+ ”2j+1/zv3e,j+1/zﬂt7 (33)
n+1/2 —n+1/2
Vel = Vej— (Bt/2)(E[ AL E M), (34)
V;j—l/Z = (1/2)(V_1+V)). (35)

We find the numerical dispersion and dissipation of this methia a standard von
Neumann analysis. Assume all fields vary asiékp— wt) on the discrete grids, and write
them as

(ET,E7,we)] = (E7,E7,V) expi(kjAX — tnumnAt). (36)

We insert these into the discrete time-advance equatiohss gor £* in terms ofV, and
then substitute into Eq. (34) to obtain the numerical disiparrelation

D =0=a®+ (a® — 4) COSKAX+ 4COSnumAt;  a= wpt. (37)
This is readily solved fotonym:

WnumAt = arccog —a?/4+ (1—a’/4) cosakdy) . (38)
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Figure 7. Phase errden,m/wem — 1| of the numerical time advance for transverse dynam-
ics. The solid, dashed, and dotted curves araferwp,At = 0.1, 0.25, and 1, respectively.

We imposedAx = cAt. For realk, wnm is real (no numerical dissipation) as long as
| coswnumAt| < 1. This obtains as long as,At < 2. The algorithm has no dissipation
if this condition is met.

Whum(K) is shown in Fig. 6 forwpAt = 1. Even for this rather large timestep the
agreement is quite good. We only need to consjex 1/Ax (the Nyquist value); since
D(—k) = D(k) we only plotk > 0. Taylor expanding Eg. (38) fat small, we find

Wnum _, 11— (kde)® 5 4

We thus recover the correct continuous light-wave disparstlation for smalla. Figure
7 plots the dispersion error. Note from Fig. 6 that, for 1, wWnym = Wem for kAXx =~ 1.
There is generally B where the phase error is zero, corresponding to the dipgirvEFWe
see from Eq. (39) that th®(a?) error vanishes fokds = 1 (but theO(a*) error does not;
kds = 0 is thus approximately whete,ym = Wem). Kdk = 1 corresponds tkAx = a, which
is about where the dips in Fig. 7 occur.

The discretization (or truncation) error of the transvetise advance i©(a?). To see
this, we can form the residud (which is identically zero) for the time advance®f (an
analogous calculation applies far):

1o =BT ELT - (NA/2) (e 1+ V). (40)
We useN = ngj_l/z and neglect its variation in space and time (which is of sdaon
importance for light waves). WritE* = E* + e, andvye = Ve + 6, whereE ™, {ic are the
true fields and, , e, the error fields (both true and error fields are continuoustfans, and
not just known on the discrete grid). Llajf_l/2 — R+ R. whereR andR; contain true and
error fields, respectively. Taylor expanding yields

R= [(0; +0x)E " — NUyg] At + [(3; + 0x)°E " — 3NOlye] A2+ O(AL?).  (41)
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The same expression, with true fields replaced by error figd&ins forR.. All fields

are evaluated df andx;_1/, SO we suppress the index labels. The continuous PDEs Egs.
(30-31) make th®(At) term inR zero. Thus, the totaR contains arO(At) combination

of error fields, which must balance &{At®) combination of true fields. The error fields
are thereforeD(At?). Note that for no plasmaN = 0), Eq. (30) annihilates th@; + dy)>
operator, so thaR would be O(At®). In factR= 0 for N = 0 since theE* advance is
exact in this case. An analysis of thag time advance, analogous to Eq. (29) B, 1/2,
shows it entailsO(At) error fields balancing(At®) true fields, which again is consistent
with O(At?) errors.

3. Electrostatic application: Langmuir-wave dispersion

As a demonstration &LvIS on an electrostatic problem (no transverse fields), we &oos
the evolution of a Langmuir wave (LW) from an initial densjigrturbation. This illustrates
the linear and nonlinear (particle trapping) physics okpia waves. In addition, the so-
called “recurrence problem” of Eulerian Vlasov codes isadgd (see below). The domain
is spatially periodic, of length one wavelength= 211/k, andEy is found by the Fourier
method with short-circuit BCs. lons form a uniform immobilackground, anglx = 0 (no
Krook operator). The electron distribution initial condit (IC) is

fe(t =0) = fo(px) (1 +€sin(kx)). (42)

fo is an equilibrium 1D distribution, either

fNR — LG*PQ/ZP% or 43

0 pTe(ZT[)l/z ( )
No _

2= — 2 _(1rw)e™. 44

0 ZU-meCKz(U.)( X) ( )

Pre = MeVre With Ve = [Te/me]¥/? the electron thermal spegad= mec?/Te, K3 is the mod-
ified Bessel function of the second kind and order two, apes p[1+ u2]Y/2. f)Rand f§
are used, respectively, for non-relativistic and relatigiruns. The only other change be-
tween the two modes is the formula fgrin the advectivexdy term in the Vlasov equation.
fg* = fdu),duZ f; is an ad-hoc 1D reduction of the 3D Juttner, or relatividtiaxwellian,
distribution f;: o
S Y o 1

b e )
y=[1+u?¥?is the full, 3D Lorentz factor.

The IC Eg. (42) produces a standing wave, or two travelingesaf amplitudedn =
nog/2 with phase velocities-v, wherev, = w/k andw is the normal-mode real frequency
corresponding tk (there is transient behavior associated with stronglyfmanroots to
the dispersion relation, which vanish afterone plasma period). As long as the trapping
regions in velocity:+(vp & ), of the two waves are separate, the dynamics are essentially
that of two non-interacting traveling waveg, = 2(w,/K)(dn/ng)/? is the half-width of
phase space vortex formed by one traveling wave.
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The non-relativistic linear theory of LWSs is well-knowntladugh the relativistic theory,
using Eq. (45), has recently been the subject of renewerksitf85]. We merely state the
non-relativistic dispersion relatiogygr = O (see Ref. [35] for details) where the dielectric

ENR is
ENR=1-— #Z/(Z) Z = V% . (46)
2(k)\D)2 VTe\/z

Ap = Vre/ Wy is the Debye lengthy is the plasma dispersion function, afd{) = dZ/d¢.
v% = w®/k is the complex phase velocity, computed for felalit complexw®. We usually
find w° for real k that satisfies the dispersion relation, and take- Re w® as the real
frequency; the context should make clear whether we meanetiieor complexw. The
relativistic Landau damping rate was calculated analj§ida Ref. [35], and found to be
significantly less than the non-relativistic value for higinperatures. This fact, along with
the complete vanishing of Landau damping for super-lunphaise velocitiess, > c), was
found earlier by a quantum statistical-mechanics calimridB6].

The recurrence problem in Eulerian Vlasov codes is a signlaéntation, or the
transport of structure to finer velocity scales as time meges. For the non-relativistic IC
Eq. (42), the force-free Vlasov equatit®h + vx0x) f = 0 can be solved along characteristics
to give f = fo(vx)[1+ €sink(X—Wt)]. The velocity “wavenumberkt grows with time. The
exact densityh decays rapidly towardy due to phase mixing, and is

n/np = 1+ esin(kx) exp— (vrkt)2/2). (47)

On a fixedvy grid, the evolution is distorted onde approaches the grid spacing. In par-
ticular, on a uniform grids j = jAv, kty ; = 21TjM (M integer) whenevelr = Mt;ec Where
trec = A/Av is the recurrence time. At these times, l§x— v, jt) = sinkx on the discrete
grid, and the numerical density equals

As shown in Fig. 9, recurrence occurs for periodic problerith forces included, even
when the initial wave has Landau damped to a small fractioitsahitial amplitude by
trec. This is despite the weak numerical damping of higimodes in cubic spline advection
(see Fig. 3), which is ineffective over the time it takes stee to “march up” to the grid
spacing. We do not take any special action to prevent filaatient or recurrence, although
techniques which artificially damp fine-scale velocity stiwe have been used by others,
e.g. including a numerical hyper-viscosﬁ&f”f [37, 38]. Instead, numerical parameters are
chosen st exceeds times of interest, such as the time for Landau danapitrapping to
occur in the initial-value problems of this section, or thezoherence time of SRS (taken
to be an inverse of the growth rate) in laser-plasma prohleWis have seen no signs of
recurrence in SRS problems.

O’Neil [10] studied analytically the initial-value probitefor Langmuir waves, which
we have just described. He solved for particle orbits in glsitraveling wave of constant
amplitude, including both those trapped in the wave paaemtell and those that are not
(the so-called passing particles). From this the rate ofevemergy loss is obtained, which
shows the collisionless (Landau) damping rate oscillatesdecays over several bounce
periodstg = 2, *(ng/3n)Y/2 of the deeply trapped particles. This reduction in Landau
damping leads to the “inflation,” or increase, of SRS abowmedr predictions [17, 18].
Later, Morales and O’Neil analyzed the nonlinear frequedownshift in a similar way
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Figure 8. Change in total electron number for non-reldiivisangmuir-wave rumiR1 with
kK\p = 0.3 ands = 104

[11]. Dewar [12] calculated the frequency shift for both adenly-created wave (like in
the initial value problem) and an adiabatically driven ofbis shift may act as a saturation
mechanism for SRS, and leads to rich multi-D physics [15189,13].

We first present a non-relativistic problem, which we cafl NR1, with k\p = 0.3 and
£ = 10~4. For the non-relativistic case, the background densitytantperature scale out
of the problem. The linear, analytic, non-relativisticpiission relation isyg = 0 with eyr
from Eq. (46). FokA\p = 0.3, this givesw = 1.16wy, Vp = w/k = 3.87vre, and an energy
damping rate = 0.02520,. We use numerical parametekg = A /32, At = oogl/32, and
a momentum grid extending ta8pre with Ap/pre = 16/256 = 0.0625. We intentionally
do not use an excessively fine resolution, to show that highracy can still be achieved.
The recurrence time iec = 335»51. Particle number conservation, shown in Fig. 8, is
excellent, even though open boundariespinare used (recall from Sec. 2.3. that cubic
spline interpolation with periodic BCs, which we usexirconserves global number). The
total wall runtime on one Opteron CPU was about 40 ns per advaheach phase-space
cell in the distribution (grand total df;N,Np); this is typical of small electrostatic runs, but
is usually several times larger for SRS problems.

The kinetic, electrostatic, and total enerdiig We,W, summed over the simulation
domain, are defined as

\/\,1(z/dxdp<wkf; va;/de—ZOEXZ; W = W+ WE. (48)

W is the single-particle kinetic energyw = mev2/2 or mec?(yx — 1) for non-relativistic

and relativistic dynamics, respectively. Figure 9 pMis and the change ik for run

NR1, averaged over one plasma peri¥ decays as the wave Landau damps, and the lost
field energy appears as particle kinetic energy. This peoegerses arounik., and the
wave energy grows until reaching about half its initial waaround = 400»51. Imperfect
reconstruction of\e (t = 0) is due to either numerical dissipation or the inclusion otés.
Figure 10 display8\& on a log scale, from which the energy damping rate is foundttigdi

a line betweertw, = 25— 230 to bevyym = 0.025Xw, (which is the slope of the straight
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curve), for runNRL. The straight line of open circles corresponds to linearggndamping
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Figure 11. Electrostatic ener\t for runNR2. The initial density perturbation &= 0.01,
giving an initial bounce period ofg = 88.60351. Rebound of the wave ener§ye occurs
later than O’Neil’'s result oz 1.25t5 = 11]1»51 since the initial linear damping decreases
on and increasesg. The spike near 301%1 is related to recurrence.

line of open circles). This compares very well with the atialyaluevana = 0.02520;. In
addition, the change in total energy is shown in Fig. 10 to be much less thaga and the
change if\.

To demonstrate trapping nonlinearity, we performed theNRwhich differs fromNRL
only in thate = 0.01 instead of 10%. This gives a traveling wave amplituded®f = 0.005,
a trapping half-width of4, /vre = 0.471, and an initial bounce periag = 88.60351. Af-
ter initially decaying, the wave energy rebounds and remehgecond peak near the time
15(1051 (see Fig. 11). According to the O’Neil theory, the wave sdawach its second
peak around 25tg, which is about 11(1)51 using the initialtg. However, this calculation
assumes a fixed wave amplitude. Since the wave initially dartpakes slightly longer
for trapping to occur. Vortex formation in phase space duegjoping is shown in Fig. 12,
where the distributiorf, is plotted att = 1220)51, after the wave has started to rebound.
The vortex is centered near the linear phase velagity 3.87vre of the right-moving trav-
eling wave. Although it is possible to use higher resolutgom display fine details of,
we obtain accurate results with this relatively coarse rimgsh

We consider now a relativistic ruriel 1, which is analogous t&Rl (kAp = 0.3,
£ = 10~%) except the relativistic IC and Lorentz factgr are used. We also must specify
Te (more preciselyTe/mec?), as this does not scale out of the relativistic problem deéis
in the non-relativistic case. To demonstrate the reldtivieduction of Landau damping,
we takeTe = 17.033 keV (1 = mec?/Te = 30). The numerical parameters axe = A /64,
At = 0.0909»51, px runs from+1.54mec, andAp/mec = 2-1.54/512 = 0.00602. The
recurrence time iec ~ 635w, beyond the run end. Figure 13 depicts the field energy
WE, which decays at approximately the ratgm = 0.002580,. The relativistic, analytic
theory of Ref. [35] gives a linear energy damping rat®gf = 0.003160,, which is 22%
larger than the numerical result. The discrepency may bealiee reduction of the Vlasov
equation or distribution function from 3D to 1D in momentuifhis is complicated rela-
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Figure 12. Electron distributioffie for run NR2 at the time 122)51, after the wave energy
has started to rebound. The phase-space vortex is due tooalé@pping and is centered
on the right-moving traveling wave phase velocityugpfk = 3.8 Arre.

tivistically by the fact that the Lorentz factgr which appears in both the Vlasov equation
and the Juttner distribution, couples all three momentamponents in a way that does not
factor. Our treatment of the advectivgdf term in particular may need refinement: the
use iNELVIS of Vy/C = Uy/yx With yx = [1+ u2]}/? entails treating the distribution as cold
in the transverse momenta. Nonetheless, the two relatidamping rates (numerical and
analytic) qualitatvely agree, in that they are much smalian the non-relativistic result of

0.02%0p.

4. Application to Raman scattering

This section presents simulations of stimulated Ramartesoad (SRS) witheLvis. In
SRS, a pump light wave, which we label mode 0 (such as a laseqioed inE™), decays
into a scattered light wave (mode 1, containe&in) and a Langmuir wave (mode 2). This
resonant, three-wave process satisfies the phase matamliions wy = w; + wy and
ko = K1 + ko, which reflect conservation of energy and momentum, reisjgiyet We focus
on backscatter igLVIS geometry, wherd; = kX, ko, ko > 0, andk; < 0. We use the finite
geometry illustrated in Fig. 1, with a large Krook rate at the density ramp-ups to prevent
fluctuations. A pump laser is incident from the left edgehviitensityly (we use subscript
L andR to denote quantities at the left and right edge). Due to tiverlomerical noise in
Eulerian Vlasov codes likeLvis, SRS generally does not develop “spontaneously” from
this system. To initiate SRS, we include a seed scatteratdwgve on the right edge with
intensitylir and wavelengtiAs.

We first present kinetic inflation of SRS and the developméand scattering off elec-
tron acoustic waves in Sec. 4.1. The suppression of tragpiragKrook operator, intended
to mimic transverse speckle loss, is examined in Sec. 4@idBet.3 shows the insensitiv-
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Figure 13. Electrostatic ener§ye for relativistic runRel 1 (log scale), with initial density
perturbatiore = 10~ as in runN\R1. The straight line of open circles corresponds to linear
energy damping eXp-Vnumt] With voym = 0.002580;.

ity of the SRS reflectivity to the use of a Gaussian broadb@rsigad of monochromatic)
scattered-light seed. Ref. [18] covers the material of &ddn detail, and Ref. [40] presents
aspects of all three sections.

4.1. Kinetic inflation and electron acoustic scatter (no Kramk operator)

As a first example, we demonstrate the kinetic inflation, drameement, of SRS due to
electron trapping and the resulting decrease in Landau ianip7, 18]. For the run se-
ries “SRS1”, we take a laser with vacuum wavelength = 527 nm (frequency-doubled
light for Nd:glass lasers), a homogeneous plasma wiftm;, = 0.025 andTe = 500 eV
(ner = gomew? /€2 is the critical density wherey, = wy). These parameters were also stud-
ied in Ref. [18] and are motivated by single hot spot expenitmelone at the Trident laser
facility [41, 42], which explored SRS from a single laserdge. ICF hohlraum conditions
where SRS is expected to be most active are hotter and ddiser2(keV, ng/ne; ~ 0.1).
Both conditions entail similar values kfA\p, and the same qualitative features were demon-
strated for hohlraum conditions in Ref. [18] . The ions areniobile, and for nowyg = 0
outside of the ramp regions. This gives a Krook-free ceffia#tbp of length of length 75.4
pum surrounded by 9.8m of “overhead” (ramps and moats) on each side.

The linear, collisionless, kinetic dispersion relatiom 8RS was found by Drake et al.
[43]. For theSRS1 parameters, the temporal most unstable mode for weak putemsity
obtains forkoAp = 0.352 (which has an amplitude Landau damping rateef 0.0354wy),
or A1 = 653 nm. We use@ s = 653.4 nm (us/wp = 5.10) andl;r = 10 °lg.. The spatial
grid spacing if\x = A2/20 (recallAt = Ax/c) with A, given by matching witkhg andAs.
For the velocity grid we usAv < v s/4 wherey, s is the trapping widthv, calculated for
the beating of the pump and seed waves. That is, we resohaedmace islands even if
there were no SRS amplification.

The instantaneous SRS reflectivityRét) = 11 (t) /lo. wherely is the reflected (left-
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Figure 14. Solid curve: SRS reflectivity for run serig®S1, calculated in the convective
steady state with pump depletion, Eq. (52). Stars: timeamexl reflectivityR,, for ELVIS

runs. The specific ruBRS1_2, with g, = 2 x 10%° W/cm?, is circled. Dashed curve: bounce
numberNgg for an electron that crosses the full domain, see Eq. (54).
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Figure 15. Instantaneous reflectiviB(t) for run SRS1_2 (lo. = 2 x 10Y W/cn?). The

time-average iR, = 0.0103.
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Figure 16. Envelope (root mean square) of the electrodtatitE, for run SRS1_2, neglect-
ing the edge overhead regions.

moving) light intensity at the left edgd; = (:’:0/2)|vgi|Ei2 is the intensity of light wave,
with |vgil/c = [1— w3 /w?]Y/? the magnitude of the group velocity amgj = e /mew the
electron oscillation speed. These quantities are all fonqdasma, not vacuum. Also, the
undamped SRS amplitude growth rate is

W
= koVoso—————. 49
Yo = KaVoso Aonan] 2 (49)

Figure 14 displays the time-averaged reflecti®y, = (R(t)) for the run serieSRS1. All
runs were below the homogeneous absolute instability lbfdsg, = 2.98 x 106 W/cn?
for undamped light waves, which gives = Yoa = (1/2)|Vg1/Vge|*?v2, with vy the LW
group velocity. Coupled-mode theory thus predicts SRSaaares a temporal steady state
where the seed light wave is convectively amplified acrosstix.

The steady state can be solved analytically for a three-waael that includes deple-
tion of the pump laser but no light-wave damping, and negle@ advection compared to
damping (the strong damping limit) [44]. This is valid ff < lps. The scattered light

wave in this limit satisfies .
diy [CPA
——= = — ol
Ix [ lol1, (50)

wherelg = lg(x)/loL, 1 = 11(X)/11r, andlg/wg — |1/w; = constant. This last expression of
action-flux conservation is a spatial version of the MarfRywe relationsL is the length
of the gain region, and the intensity gain expon@ris

-1/2 2
_PAp [y el T X loLAG . (51)
1+ | 871x 1015Wpum?2/cnm?

A1p is the scattered light wavelength in the plasmky, wy) = engr— 1 is the electron
susceptibility, where the dielectregng is given in Eq. (46). k. and w, are given by the
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beating of the chosen pump and scattered light waves. Thhingsreflectivity is
R(1-R+8) =38exp[G(1-R)] (52)

with R= (Q)Q/(A)]_)R ands= (Q)O/(*)l)llR/IOL-

For small pump intensities, Fig. 14 shows the/1s reflectivities are small and in agree-
ment with the analytic coupled-mode result. Howevelgat= 4 x 104 W/cn? there is a
sudden increase above the coupled-mode reflectivity. $ttteei so-called kinetic inflation
of SRS. It is due to electron trapping in the Langmuir wave #redresulting decrease of
Landau damping.

The time evolution of SRS is then bursty, as illustrated leyplot in Fig. 15 of the in-
stantaneous reflectivity for the inflated case With= 2 x 10 W/cn?, which we label run
“SRS1_2.” The numericaRy, = 1.03% is well above the coupled-mode level of 6204,
indicating strong inflation. On a computational note, thag#ispace cell advance wall time
for this run was 140 ns (compare to 40 ns for the electrostaticNRl above). Figure 16
displays the envelope of the longitudinal electric fiéld which reflects plasma wave ac-
tivity. Pulses of large-amplitude LWs develop near the dlasdrance (the left edge), and
then break up into modulations that propagate along “ray&iyafrom the laser entrance
with group velocities neavre. The process repeats once a large enough quiescent plasma
develops on the left side. The burstsR(t) near 3, 6, and 10 ps correspond to large LW
pulses on the left edge. The dynamics of these pulses hastlsebeen explained in terms
of “etching” at the pulse’s left edge, or Landau damping tsorent electrons before they
become trapped [45, 46].

For the two strongest pump strengths ploteg,is actually below the coupled-mode re-
sult (“kinetic deflation”). This indicates saturation meacdisms besides pump depletion are
important. Both the nonlinear downshift of the Langmuirvedrequency and the trapped-
particle modulational instability [14] are shown to occarsome extent in these runs, al-
though their relative importance has not been quantified.

For trapping nonlinearity to occur, resonant electronggghmoving near the LW phase
velocity vpr = wy/kz) must complete enough of a bounce orbit before a detrappimzeps
disrupts their motion. In th&RS1 run series, the only detrapping mechanism that sets a
threshold is loss out of the ends of the finite geometry (caelamplitude waves develop,
trapping can be disrupted by various saturation mechangrdghe resulting decrease in
wave amplitude). We can estimate a trapping threshold lmytzing the “bounce number”
Ns, or how many bounce periods a resonant electron undergaesassits the domain:

Ng(x) = %{ /XOX dxX kg(X), ka(X) = ﬂ[nz(x) /nel 2. (53)

nz(x) is the local LW amplitude. Inflation will occur iNg 2 1, such that the electron
distribution is sufficiently distorted within the gain regifor Landau damping reduction to
be effective. The details of findinyg, using the Langmuir wave driven by the pump and
scattered waves as found in the convective coupled-modeytpeesented above, are found
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Figure 17. Time-integrated spectrum of reflected lightat the left edge for rui$RS1_2.
The dashed vertical line is the scattered segg= 5.10w,. Star labeled “EAS” indicates
electron acoustic scatter. “Power dB” is 20{gtE ~(w)|. The pump frequency isx =
6.32wy.

in Ref. [18]. We just give the result:

e4—1
No = Nos g7 (54)
wpl
Ngs = —— 12 55
Bs 2Tle2 (nZS/ ne) ) ( )
. (kz)\D)z Vos0Vos1

Ngs is the bounce number if there were no seed amplificat®n+(0).

We briefly discuss the spectral features of the $881_2, and refer the reader to Ref.
[18] for details and justification. The time-integrated eefed light spectrum at the left
edge is shown in Fig. 17. Sinaey = 6.32wp, the SRS light is slightly more thaw,
below wy, the difference due to the increaseudp abovewy due to finite temperature. The
peak power is upshifted from the seed vaduig (the linear most unstable mode) due to the
trapping-induced downshift in the LW frequenay. This upshift develops in time, as the
LW amplitude grows.

In addition, there is a weak signal labeled “EAS” at a freqyebetween SRS and
wp. This is similar in frequency to scattered light observedhia single-speckle Trident
experiments [41], although the intensity observed therg evdy 3000x smaller than SRS
(ours is~ 10° times smaller). In this paper and elsewhere, the scattayetWas attributed
to stimulated scattering off an electron acoustic wave (BEAWdich becomes undamped
once electron trapping occurs. This mode exists as an urethnopt of 1+ Rex(k,w) =0
with w= 1.3k (see Refs. [47, 48, 49]). All such roots of the complex Landigpersion
relation 14 x = 0 are heavily damped.

We provide an alternative mechanism for generating EAS,lighich is revealed by the
electrostatic spectrury(k,w) presented in Fig. 18. The “Stokes curve” on this plot is the
set of (ky,w,) points phase-matched for electromagnetic decay of the ptiapis,w, =
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, power dB

Figure 18. Electrostatic spectruB(k,w) over the space-time domain of Fig. 16. SRBS,
SRFS label backward and forward SRS, respectively. Blasketline is the linear Landau
LW dispersion curve. Stokes curve (blue dashed line) is ddfin the text.

wp — wy andky = ko — kg with wy € [0, o], cko = [w§ — w3]¥?, andcky = +[wf — w?]*/?
(the +,- root fork; apply for forward and backward SRS, respectively). Earlyiime,
SRS occurs at the intersection of the Stokes curve and tharlidV dispersion curve. As
electrons are trapped, the LW frequency downshifts aloegStiokes curve. The distorted
distribution supports a set of beam acoustic modes (BAMs$jchivare seen as a tail at
lower k than the SRS Langmuir wave and lowerdanthan the linear dispersion curve.
These BAMs can parametrically interact with each other aswhyl to the acoustic feature
W ~ Kvre, labeled “EAW”. We call this process beam-acoustic deca4¥B The lowk
EAWSs can produce the high&ractivity along thew ~ kvre line by harmonic generation.
The pump laser then scatters off the weak EAW signal on thkeStourve, in a process
akin to Thomson scatter which we refer to as electron agou$tomson scatter (EATS).
The linear modes of the numerically-obtained distributieee Fig. 10 of Ref. [18]) include
a set of BAMs (some weakly damped or even linearly unstabtayell as a heavily-damped
EAW, that agree nicely with the observégl(k, w) spectrum. The lack of any increase in
EAW activity at the Stokes point supports our claim that theayved EAS light is from a
Thomson-like process, and not the resonant excitation G/aA.

The discovery of the BAD-EATS process iLVIS simulation data, namely weak
spectral signals and linear-mode analysis of humeric#liloligions, constitutes a striking
demonstration of the low-noise capability of Eulerian kineodes.

4.2. Inclusion of a Krook operator

Thus far the only detrapping process considered is end lessodfinite longitudinal geom-
etry. Finite transverse speckle size (discussed below)ddtraps resonant electrons, and
is generally much more rapid than end loss. Coulomb cofisiaso kick electrons out of
their bounce orbits and thereby detrap. For a generic datrggprocess that removes an
electron from resonance in a timg, we define the bounce numbig = tye/1s U [6n]1/2

as the number of bounce orbits (pering) completed irtge. We expect trapping nonlinear-
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ities to be important only iNg = 1. Preliminary work suggests that collisional detrapping
is generally much slower than side loss in ICF conditionsessthe plasma is high-Z, or
cold andlow density.

We briefly discuss the speckle pattern of the lasers usedpx@eriments such as NIF.
These beams are generally conditioned, or smoothed, wittincmus phase plates (CPPs)
[50]; random phase plates (RPPs) were common in the pastfgijase plate is a lens with
a rippled surface (smooth for CPPs, sharp steps for RPPfhoMtia phase plate, an ideal
optical system would give a diffraction-limited focal sp&ut ICF laser systems generate
spots far from the diffraction limit, with a generally irnglgr and difficult to predict pattern
of very high-intensity speckles. With the use of a phaseeplahe obtains an intensity
profile with an envelope much larger than the diffractionififset by the lens ripples),
and with speckle intensities lower than the unconditionednp and of well-characterized
statistics (the intense speckles are the diffractiontéthspot of the full lens aperture). The
ripples on NIF are such that the resulting beam envelope psoapnately square. This
approach has proven to be more effective than defocusingribi@al, unsmoothed beam.
The intense speckles from a square-aperture phase platee ion NIF, are approximately
of lengthL | ~ 5F 2\ and roughly uniform transverse diameter~ F Ao whereF = Lioc/D
is the F-number of the optick . is the lens focal length arid the lens diameter) [52].

For NIF indirect-drive targets, a grand total of 192 beanesaaranged symmetrically
about the hohlraum'’s axis into four cones, making angles3p88, 44, and 50 degrees with
respect to the axis. Folir = 22 square beams are grouped together in a quad and focused
with the same lens (they strike it at different locationsithviwo beams linearly polarized
in each transverse direction (polarization smoothing)vdaouum, all beams overlap in a
region between the laser entrance hole and hohlraum wakbiyAmm this overlap region,
the beams diverge. The resulting speckle pattern thussviargpace, based upon how many
square beams overlap (either one, two, or four). When foerlap, the speckles “see”
the full quad on the lens, the effective beam diameter is abgu/8, and the speckles
are cylindrically symmetric withF ~ 8. However, for regions covered by two beams or
one beam, the speckles are nedfly= 8 by F = 22 (asymmetric) oF = 22 by F = 22,
respectively. This vacuum propagation picture is furthemplicated by the presence of
plasma, e.g. refraction of light away from high-densityioeg. Modeling of the 3D laser
propagation (and backscatter) in NIF targets, with thexparanvelope codesr3D [53, 54]
(time-dependent) anglLiP [55, 56] (steady-state), validates this qualitative pietu

In a speckled laser beam, SRS-driven Langmuir waves areitef §ize, approximately
that of the intense laser speckles. Resonant electronsaspeckle from the surrounding
thermal bath, interact with the wave for a finite transit tjrsued then leave. Landau damping
thus occurs as transit-time damping: free electrons fan fitee speckle enter the region of
Langmuir wave activity, exchange energy by interactinghititand exit as free electrons.
Resonant electrons, moving alori¢) @nd across_() a speckle with speeds (vp, Vre),
have transit times of)| ~ L||/vp2 andt, ~ L /vre. For a cylindrical, square-lens speckle,
1) /11 ~ 5F vre/Vpz Which is typically>> 1. Thus, transverse side loss is usually much faster
than end loss, and is the relevant detrapping time.

Calculations of transit-time damping, using nonlinearcetn orbits in a prescribed
Langmuir-wave potential that mimics speckle geometryehasen performed by H. Rose
[57]. These show the transit-time damping rate decreasagyslvith Ng, reaching about



Eulerian-Lagrangian Kinetic Simulations of Laser-Pladntaractions 113

=2

10 -
A<— Ve = 0
*
10°
2
@ ¥
10* '
I *¥
v Tw =0.005 *
k' %
-5
10
10° 19‘2 10"
Y] w
k' %p

Figure 19. Time-averaged reflectivifg,, for run seriesSRSk (shown as stars), which
matches thég = 10 W/cn? case from the serie8RS1 (Ray = 0.556%, shown as the tri-
angle) except thatx # 0. The solid lineR= 7.86 x 10~° is the steady-state coupled-mode
result using linear Landau damping and= 0.

half its linear value folNg = 1. This quantifies how trapping reduces Landau damping
in speckle geometry. Similar work on the nonlinear freqyedownshift shows it also
turns on slowly withNg [58]. The damping rate in a finite-geometry speckle becomagm
complicated once Langmuir-wave filamentation occurs, astili under investigation [16].

Speckle side loss can be approximately modeled in a 1D Vlasde by including
a Krook operator, as iELVIS. We stress that this operator i®t being used to model
collisions, but the transverse loss of electrons from tieekle and their replacement from a
thermal (Maxwellian) population. Our Krook operator, winmonserves number but neither
momentum nor energy, is appropriate for this purpose. TlwkKdamping ratey is the e-
folding time for some perturbation ify, S0 we simply takéje = 1/vk andNg = 1/vk1g =
(0p/21vk ) (8n/Ne) /2. We have found the time for half the particles of a thermalysaigon
to leave a cylinder of diametdr, is tsovre/L, ~ (0.68,0.33) in 2D and 3D geometry,
respectively. Assuming an exponential decrease of confia€iitles, these correspond to
Krook e-folding rates ofx = In2/tsg = (1.02,2.10)vye/L .

We examine the role of a Krook operator with the run sefigSk. These runs are
like the lo = 10 W/cn? Krook-free case from the seri@RS1 discussed above, except
that a nonzero value ofk in the central region is used. To give a sense of physically
reasonable values for, we find that forL | = FAg and the 3Dvk formula found above,
Vk /wp = 2.10Ap /FAq. For our Trident-like run conditions arfel= 8, this givesvk /wp =
8.26x 103, Figure 19 presentR,, as a function o)k, and shows a gradual decrease of
the reflectivity to the coupled-mode value and then belowe Gbupled-mode result was
found with the Krook-free susceptibility, and so neglects the increase of damping with
VK.

We take the casex /wp, = 0.005 as a marginal one just below threshold for any in-
flation. This run’s reflectivity becomes relatively steadytime, with the Langmuir wave
amplitude fairly uniform in space. We plot the approximateibce numbelg vs. X, using
the spatially locabn for tg for this run in Fig. 20. The slight increase, and greater tluct
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Figure 20. Ng = 1/vk g for detrapping due to Krook relaxation, for run with /0, =
0.005 from serie$RSk at time 8.8 ps (after steady state has been reached). Thkissgast
below threshold for any SRS inflatiomg is calculated using the local LW amplituda
(see text for details).

ations, inNg toward the laser entrance (left edge) reflect the weak SR$faration and
temporal non-stationarity.

4.3. Inclusion of seed bandwidth

So far, we have always seeded SRS with a monochromatic @ftrg seed light wave, with
a wavelength chosen to be the temporal most unstable modeisEimilar to the backward
Raman amplifier and other “optical mixing” arrangementswideer it is unrealistic for ICF,
where SRS grows from fluctuations (electrostatic or electrgnetic) in the plasma, or from
light or Langmuir waves developing from SRS or other proessaitside the spatial region
of interest. In this section we show that SRS inflation anddtettered-light spectrum
are essentially unchanged when bandwidth is included irsdleel light wave. This gives
confidence that our prior results are not an artifact of cemeseeding.

Let f(t) = focodwmt + @(t)] denote the generated signal with bandwidth, which we
use forE~(t) at the right edge. We present an algorithm to find the plpgaseq@(t,) on the
discrete time grid,, such that f (w)|? is roughly Gaussian with meany:

|f(w)[? O exp—(w—ww)?/2807]. (57)

Our method can be thought of as a discrete analog of a Langeguiation. They, satisfy
the following recurrence relation:

Ghiz— h—€ N — 1) = AM[N]YZ(1—e M N)ry, (58)

rn is a uniform normal deviate of mean zero and variance onesesthérom the probabil-
ity distribution P(r) = [2r]~¥2expg—r?/2]. Awis the desired spectral bandwidth, and the
“phase decay timeNAt (N > 1 but need not be integer) controls how quickly the instan-
taneous frequency shift = dg/dt decorrelates.Aw andN are independent parameters.
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Figure 21. Time-averaged reflectiviBy, for run serieBand vs. scattered-light seed band-
width Aw. Aw = 0 result is for runSRS1_2. Dashed line is linear coupled-mode result
R = 6.26 x 10~* for a monochromatic seety = 0.

0

|
=
=

(power dB)
N
Q

|
w
Q

Figure 22. Time-integrated scattered-light seed spectarmw = 0.509w, run from the
seriesBand. The red dashed curve is Eq. (57) tof = s = 5.100p.

Different signals can, for infinite time, have similar powsrectra, but different rates at
which (an appropriately smoothed)changes. In the context of SRS, we wartb change
faster than the SRS growth time, or else SRS will effectigely a relatively monochromatic
seed. We implement this method via a fictitious intermedjhte

1o =€ NG, o+ (1— e—l/'\'> M G =G+ (59)

The series oELvIS runsBand illustrates the effect of seed bandwidth. The runs are
identical to the rurSRS1_2 except for the inclusion of seed bandwidth (the overall seed
intensity is the sameyr = 10 °lg). For all runsNAt = 22w, *, which is shorter than the
undamped growth time/Yo = 43.9w,* from Eq. (49).yo should be an upper bound on the
timescale of SRS dynamics, so the seed frequency decesdater than SRS evolves. The
time-averaged reflectivitiRy, for differentAw is plotted in Fig. 21, and shows only a slight
decrease with increasing bandwidth. Figure 22 depictsithe-averaged seed spectrum
for the highest-bandwidth cadeo = 0.509w,. It nicely matches the theoretically expected
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Figure 23. Time-integrated reflected-light spectrum&ar= 0.50%w, run from the series
Band. weasis the observed electron acoustic scatter in theSR81 2 from Fig. 17.

Gaussian (the red dashed curve) negt but has higher tails around the -40 dB level. The
reflected light spectrum is displayed in Fig. 23, and showS SRiplification over a much
narrower frequency band than the noise (gain narrowingdo Ahere is no distinct electron
acoustic scatter (EAS) peak above the seed level, althdwedh tk, w) spectrum is similar
to the Aw = 0 case shown in Fig. 18 (including the presence of EAWSs). Tidgates
EAS in these runs is not a parametric process that resorduitls EAWS: if it were, then
adding more scattered-light seed by increagingwould increase the EAS level.

5. Conclusion

In this chapter, we presented the 1D Vlasov-Maxwell soleris. The accuracy of its
numerical methods was analyzed, in particular showingdhedissipation and dispersion
(and global number conservation) of advection by cubimggliterpolation. The transverse
light-wave algorithm was seen to have low dispersion emdrre dissipation fompAt < 2.

As an electrostatic application afvis, the evolution of free Langmuir waves, initiated
as density perturbations, was presented. For non-redtitiproblems, the number and en-
ergy conservation and agreement with the linear analyticpitag rate were both excellent.
Nonlinear damping reduction due to electron trapping was al/idenced. The numerical
difficulties due to velocity-space filamentation were sei@ntlie recurrence of the initial
perturbation once the recurrence titag = A/Av was reached. The Landau damping for
relativistic dynamics was shown withLvIS to be much less than its non-relativistic value,
for the high temperature considered (17 keV). Although ithigualitatively like recent an-
alytic results [35], the lack of better agreement may be dubé reduction from 3D to 1D
momentum used iBLVIS.

We also discussed several applications to stimulated Ratettering (SRS). For no
Krook operator (outside of boundary regions), the kinetitation of SRS above coupled-
mode levels occurs. This is due to the trapping-inducedatéstu of damping. A simple
threshold, based upon the number of bounce oMjitsompleted by resonant electrons as
they transit the finite gain region, was also given. The mediélectron distribution leads to
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electrostatic beam acoustic modes, which excite electonstic waves (EAWS) by beating
with each other. The laser then scatters off these in a Thaoilile® way, which is quali-
tatively similar to (but much lower in amplitude than) thea&ton acoustic scatter (EAS)
observed in Trident experiments [41]. This explanationissinct from the stimulated EAS
picture, where a laser parametrically scatters off (andetbee resonantly excites) an un-
damped EAW.

These SRS results were then expanded in two ways. Fist, a&rmizook rate was
included, which provides an inflation threshold. Inflaticggins when electrons complete
roughly one bounce orbit before being detrapped by Kroak«adlon. We discussed how a
Krook operator can mimic in 1D the transverse loss of elestifoom a laser speckle, and
estimated the sideloss escape rate for the phase-plati#iooed laser beams being used
on NIF. The other extension involved using a broadband seattesed light wave (with
Gaussian noise), instead of a monochromatic one. Singes is very low-noise, some
seed level must be included from which SRS can grow. For thiaténl case considered,
even a large bandwidti\{o = wys/10) decreased the reflectivity only slightly. This shows
that the prior results were not an artifact of a highly coheseed.

Despite the importance of multi-D effects in SRS, there ditkimportant questions
which can be addressed in 1D. The construction and validatfeenvelope models that
can accurately replicate nonlinear kinetic simulatiorspeeially in the onset of inflation,
SRS saturation, and resulting scattered light spectrarergetic electron distributions, is a
work in progress. Recently, an adiabatic theory of drivendrauir waves [59] has been ap-
plied successfully to the frequency shift [25] and Landaonpizg reduction [26] irELVIS
simulations of SRS. The results differed from the standarthfilas a la Morales [11], and
were valid above the so-called “loss of resonance” likakp > 0.53. A wavenumber, as
well as frequency, shift were also observed in these runs.

In addition, little attention has been paid to how trappiffg@as SRS in an inhomoge-
neous plasma. Kinetic inflation has been foundiimis runs in a density gradient [24, 40],
with a somewhat larger reflectivity when the laser propagédevard higher rather than
lower density, but a satisfactory understanding is lackifige competition in SRS of trap-
ping and the Langmuir decay instability (LDI), or decay of angmuir wave into an ion
acoustic wave and backward-moving Langmuir wave, is alsxplored. This requires
mobile ions, which were excluded from the runs presenteé.hér kinetic (but linear)
treatment of LDI was given in Ref. [60]

Use of a range of computational tools, from fluid to Vlasov &otjgle-in-cell, with
varying dimensionality and physics models, will continoeyield new insight into Raman
scattering and other processes of basic plasma physics.
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